Skip to main content
Log in

Ferrite Nanoparticles: Synthesis, Characterization, and Catalytic Activity Evaluation for Solid Rocket Propulsion Systems

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

A Publisher Correction to this article was published on 31 March 2021

This article has been updated

Abstract

Ammonium perchlorate (APC) is the most common oxidizer in use for solid rocket propulsion systems. However its initial thermal decomposition is an endothermic process that requires 102.5 J/g. This behavior involves high activation energy and could render high burning rate regime. This study reports on the sustainable fabrication of barium ferrite nanoparticles as a novel catalyzing agent for APC oxidizer. Colloidal BaFe12O19 nanoparticles with consistent product quality were fabricated using hydrothermal processing. TEM micrographs demonstrated mono-dispersed particles of 10 nm particle size. XRD diffractogram demonstrated highly crystalline material. The synthesized colloidal BaFe12O19 particles were effectively coated with APC particles via co-precipitation using fast-crash solvent–antisolvent technique. The impact of ferrite particles on APC thermal behavior has been investigated using DSC and TGA techniques. APC demonstrated an initial endothermic decomposition stage at 142 °C with subsequent two exothermic decomposition stages at 297.8 and 452.8 °C respectively. At 1 wt%, barium ferrite offered decrease in initial endothermic decomposition stage by 42.5%. The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 19.7%. These novel features can inherit ferrite particles unique catalyzing ability for advanced highly energetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. S. Jain, M. Mehilal, S. Nandagopal, P. Singh, K. Radhakrishnan, B. Bhattacharya, Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def. Sci. J. 59(3), 294 (2009)

    Article  Google Scholar 

  2. A. Kumari, S. Mehilal, M. Jain, B. Jain, Bhattacharya, Nano-ammonium perchlorate: preparation, characterization, and evaluation in composite propellant formulation. J. Energ. Mater. 31(3), 192–202 (2013)

    Article  CAS  Google Scholar 

  3. G.P. Li, L.H. Shen, B.M. Zheng, M. Xia, Y.J. Luo, The preparation and properties of AP-based nano-limit growth energetic materials, in Advanced Materials Research (Trans Tech Publ, Zurich, 2014), vol. 924, pp. 105–109

  4. M. Zou, X. Jiang, L. Lu, X. Wang, Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. J. Hazard. Mater. 225, 124–130 (2012)

    PubMed  Google Scholar 

  5. J.A. Conkling, C. Mocella, Chemistry of pyrotechnics: basic principles and theory (CRC Press, Boca Raton, 2010)

    Google Scholar 

  6. G.P. Sutton, O. Biblarz, Rocket propulsion elements (2001)

  7. N. Kubota, Propellants and explosives: thermochemical aspects of combustion (Wiley, Hoboken, 2015)

    Google Scholar 

  8. R.A. Chandru, S. Patra, C. Oommen, N. Munichandraiah, B. Raghunandan, Exceptional activity of mesoporous β-MnO2 in the catalytic thermal sensitization of ammonium perchlorate. J. Mater. Chem. 22(14), 6536–6538 (2012)

    Article  CAS  Google Scholar 

  9. S. Chaturvedi, P.N. Dave, Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. J. Exp. Nanosci. 7(2), 205–231 (2012)

    Article  CAS  Google Scholar 

  10. M.J. Turner, Rocket and spacecraft propulsion: principles, practice and new developments (Springer, New York, 2008)

    Google Scholar 

  11. N.R. Council, Advanced energetic materials (National Academies Press, Washington, DC, 2004)

    Google Scholar 

  12. S.G. Hosseini, R. Abazari, A. Gavi, Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 37, 72–79 (2014)

    Article  CAS  Google Scholar 

  13. S. Wang, R. Shen, Y. Ye, Y. Hu, An investigation into the fabrication and combustion performance of porous silicon nanoenergetic array chips. Nanotechnology 23(43), 435701 (2012)

    Article  PubMed  CAS  Google Scholar 

  14. P.R. Patil, V.E.N. Krishnamurthy, S.S. Joshi, Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos. Pyrotech. 31(6), 442–446 (2006)

    Article  CAS  Google Scholar 

  15. N. Li et al., Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon 54, 124–132 (2013)

    CAS  Google Scholar 

  16. S.R. Chakravarthy, E.W. Price, R.K. Sigman, Mechanism of burning rate enhancement of composite solid propellants by ferric oxide. J. Propuls. Power 13(4), 471–480 (1997)

    Article  CAS  Google Scholar 

  17. S.-M. Shen, S.-I. Chen, B.-H. Wu, The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim. Acta 223, 135–143 (1993)

    Article  CAS  Google Scholar 

  18. A. Nema, S. Jain, S. Sharma, S. Nema, S. Verma, Mechanistic aspect of thermal decomposition and burn rate of binder and oxidiser of AP/HTPB composite propellants comprising HYASIS-CAT. Int. J. Plastics Technol. 8, 344–354 (2004)

    CAS  Google Scholar 

  19. L. Liu, F. Li, L. Tan, L. Ming, Y. Yi, Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellants Explos. Pyrotech. 29(1), 34–38 (2004)

    Article  CAS  Google Scholar 

  20. R. Rastogi, G. Singh, R.R. Singh, Burning rate catalysts for composite solid propellants Combust. Flame. 30, 117–124 (1977)

    Article  CAS  Google Scholar 

  21. W. Pang et al, Effects of different nano-sized metal oxide catalysts on the properties of composite solid propellants. Combust. Sci. Technol. 188(3), 315–328 (2016)

    Article  CAS  Google Scholar 

  22. P.W.M. Jacobs, H. Whitehead, Decomposition and combustion of ammonium perchlorate. Chem. Rev. 69(4), 551–590 (1969)

    Article  CAS  Google Scholar 

  23. T. Daou et al, Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem. Mater. 18(18), 4399–4404 (2006)

    Article  CAS  Google Scholar 

  24. X. Wang, Y. Li, Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124(12), 2880–2881 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. A. Cabanas, M. Poliakoff, The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem. 11(5), 1408–1416 (2001)

    Article  CAS  Google Scholar 

  26. J.W. Lee, A.S. Hall, J.-D. Kim, T.E. Mallouk, A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24(6), 1158–1164 (2012)

    Article  CAS  Google Scholar 

  27. J. Li, Engineering Nanoparticles in Near-critical and Supercritical Water, Ph.D. (University of Nottingham, Nottingham, 2008)

    Google Scholar 

  28. M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43(7), 2085–2103 (2008)

    Article  CAS  Google Scholar 

  29. K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology (William Andrew, Norwich, 2001)

    Google Scholar 

  30. P. Savage, S. Gopalan, T. Mizan, C. Martino, Reactions at supercritical conditions: applications and fundamentals. Am. Inst. Chem. Eng. (AIChE) J. 41(7), 1723–1778 (1995)

    Article  CAS  Google Scholar 

  31. K.S. Morley et al, Clean preparation on nanoparticulate metals in porous supports: a supercritical route. J. Chem. Mater. 12, 1898–1905 (2002)

    Article  CAS  Google Scholar 

  32. J.A. Darr, M. Poliakoff, New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 99(2), 495–541 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. S. Elbasuney, Dispersion characteristics of dry and colloidal nano-titania into epoxy resin. Powder Technol. 268, 158–164 (2014)

    Article  CAS  Google Scholar 

  34. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015)

    Article  CAS  Google Scholar 

  35. S. Elbasuney, Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology 22, 66–71 (2015)

    Article  CAS  Google Scholar 

  36. S. Elbasuney, Sustainable steric stabilization of colloidal titania nanoparticles. Appl. Surf. Sci. 409, 438–447 (2017)

    Article  CAS  Google Scholar 

  37. S. Elbasuney, Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 305, 538–545 (2017)

    Article  CAS  Google Scholar 

  38. S. Elbasuney, Novel colloidal molybdenum hydrogen bronze (MHB) for instant detection and neutralization of hazardous peroxides. TrAC Trends Anal. Chem. 102, 272–279 (2018)

    Article  CAS  Google Scholar 

  39. T. Adschiri, Y. Hakuta, K. Arai, Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res. 39(12), 4901–4907 (2000)

    Article  CAS  Google Scholar 

  40. T. Adschiri, K. Kanazawa, K. Arai, Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. Am. Ceram. Soc. 75(9), 2615–2618 (1992)

    Article  CAS  Google Scholar 

  41. S. Elbasuney, Novel colloidal nanothermite particles (MnO2/Al) for advanced highly energetic systems. J. Inorg. Organomet. Polym. Mater. 28(5), 1793–1800 (2018)

    Article  CAS  Google Scholar 

  42. S. Elbasuney, A. Elsaidy, M. Kassem, H. Tantawy, “Infrared signature of novel super-thermite (Fe2O3/Mg) fluorocarbon nanocomposite for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(5), 1718–1727 (2018)

    Article  CAS  Google Scholar 

  43. S. Elbasuney et al., Super-thermite (Al/Fe2O3) fluorocarbon nanocomposite with stimulated infrared thermal signature via extended primary combustion zones for effective countermeasures of infrared seekers. J. Inorg. Organomet. Polym. Mater. 28(6), 2231–2240 (2018)

    Article  CAS  Google Scholar 

  44. S. Elbasuney, M. Gaber Zaky, M. Radwan, S.F. Mostafa, Stabilized super-thermite colloids: a new generation of advanced highly energetic materials. Appl. Surf. Sci. 419, 328–336 (2017)

    Article  CAS  Google Scholar 

  45. S. Elbasuney, H.E. Mostafa, Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology 22, 82–88 (2015)

    Article  CAS  Google Scholar 

  46. S. Elbasuney, S.F. Mostafa, Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technol. 278, 72–83 (2015)

    Article  CAS  Google Scholar 

  47. T. Tillotson, L. Hrubesh, R. Simpson, R. Lee, R. Swansiger, L. Simpson, Sol–gel processing of energetic materials. J. Non-cryst. Solids 225, 358–363 (1998)

    Article  CAS  Google Scholar 

  48. M. Mahinroosta, Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J. Nanostruct. Chem. 3(1), 47 (2013)

    Article  Google Scholar 

  49. V. Boldyrev, Thermal decomposition of ammonium perchlorate. Thermochim. Acta 443(1), 1–36 (2006)

    Article  CAS  Google Scholar 

  50. L. Li, Y. Zhou, Z. Li, Y. Ma, C. Pei, One step fabrication of Mn3O4/carbonated bacterial cellulose with excellent catalytic performance upon ammonium perchlorate decomposition. Mater. Res. Bull. 60, 802–807 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been conducted at nanotechnology research center in collaboration with department of chemical engineering, School of chemical engineering, Military Technical College, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Elbasuney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasuney, S., Gobara, M. & Yehia, M. Ferrite Nanoparticles: Synthesis, Characterization, and Catalytic Activity Evaluation for Solid Rocket Propulsion Systems. J Inorg Organomet Polym 29, 721–729 (2019). https://doi.org/10.1007/s10904-018-1046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-1046-x

Keywords

Navigation