Skip to main content
Log in

Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, pH-sensitive magnetic hydrogels were prepared from carboxymethyl cellulose (CMC), β-cyclodextrin (β-CD) and chitosan (CS) without a toxic agent by a simple method as a new carrier for a controlled drug release. Magnetic (Fe3O4) nanoparticles were synthesized by chemical co-precipitation via in situ method under the presence of N2 gas. The effect of magnetic (Fe3O4) nanoparticles amounts on CMC, β-CD and CS hydrogel for drug delivery of Methotrexate (MTX) was investigated. The stability of hydrogel was evaluated using TGA, XRD, VSM, FT-IR, and FE-SEM measurements. The SEM images demonstrated the Fe3O4 distribution in the hydrogel, while XRD patterns confirmed the cubic crystalline phase of Fe3O4 nanoparticles. The hysteresis loop of low magnetic CMC/β-CD/CS hydrogel and high magnetic CMC/β-CD/CS hydrogel is 6.32 and 11.6 emug−1, respectively. The swelling manner of the CMC/β-CD/CS hydrogels was studied at a varied pH range 2–11. CMC/β-CD/CS hydrogel demonstrated slightly higher swelling amount as compared to magnetic CMC/β-CD/CS hydrogel. The prepared hydrogel showed a pH-sensitive swelling manner with great water-absorbing at pH 9. The maximum capacity of swelling in CMC/β-CD/CS hydrogel, low and high magnetic CMC/β-CD/CS hydrogels were obtained 8.8, 6.7 and 4.6 g g−1 respectively. In vitro, MTX release experiment was performed to attain the success of this new method of magnetic CMC/β-CD/CS hydrogel for drug delivery progress. The results showed that the release percent of CMC/β-CD/CS hydrogel was more significant than the other prepared hydrogel. The maximum drug release in CMC/β-CD/CS hydrogel, low and high magnetic CMC/β-CD/CS hydrogels were obtained 92.7, 80.4 and 58.3% at pH 7.4, respectively. Also, the MTX release investigated under an external alternating magnetic field (AMF). The studies illustrated that the response of hydrogel nanocomposite to external stimulants could be used for novel drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    CAS  Google Scholar 

  2. S. Pandey, K.K. Nanda, Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sens. 1(1), 55–62 (2015)

    Google Scholar 

  3. S. Pandey, S.B. Mishra, Microwave synthesized xanthan gum-g-poly (ethylacrylate): an efficient Pb2+ ion binder. Carbohydr. Polym. 90(1), 370–379 (2012)

    CAS  PubMed  Google Scholar 

  4. M. Yadollahi, S. Farhoudian, S. Barkhordari, I. Gholamali, H. Farhadnejad, H. Motasadizadeh, Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogelbeads as drug delivery systems. Int. J. Biol. Macromol. 82, 273–278 (2016)

    CAS  PubMed  Google Scholar 

  5. S. Barkhordari, M. Yadollahi, H. Namazi, pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res. 21(6), 1–9 (2014)

    CAS  Google Scholar 

  6. H. Hezaveh, I.I. Muhamad, Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int. J. Biol. Macromol. 50(5), 1334–1340 (2012)

    CAS  PubMed  Google Scholar 

  7. L. Liu, S. Zhu, A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride. Carbohydr. Polym. 68(3), 472–476 (2007)

    CAS  Google Scholar 

  8. A. Abou-Okeil, M. Rehan, S.M. El-Sawy, M.K. El-bisi, O.A. Ahmed-Farid, F.A. Abdel-Mohdy, Lidocaine/β-cyclodextrin inclusion complex as drug delivery system. Eur. Polym. J. 108, 304–310 (2018)

    CAS  Google Scholar 

  9. C. Chang, B. Duan, J. Cai, L. Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 46, 92–100 (2010)

    CAS  Google Scholar 

  10. A. de Sousa Leal, R. de Araújo, G.R. Souza, G.L.N. Lopes, L.C.C. Nunes, In vitro bioactivity and cytotoxicity of films based on mesocarp of Orbignya sp. and carboxymethylcellulose as a tannic acid release matrix. Carbohydr. Polym. 201, 113–121 (2018)

    PubMed  Google Scholar 

  11. Z. Shariatinia, A. Mazloom-Jalali, Chitosan nanocomposite drug delivery systems designed for the ifosfamide anticancer drug using molecular dynamics simulations. J. Mol. Liq. 273, 346–367 (2019)

    CAS  Google Scholar 

  12. A.V. Samrot, U. Burman, S.A. Philip, N. Shobana, K. Chandrasekaran, Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform. Med. Unlocked 10, 159–182 (2018)

    Google Scholar 

  13. Y. Liang, X. Zhao, P.X. Ma, B. Guo, X. Han, pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J. Colloid Interface Sci. 536, 224–234 (2019)

    CAS  PubMed  Google Scholar 

  14. T. Vermonden, R. Censi, W.E. Hennink, Hydrogels for protein delivery. Chem. Rev. 112, 2853–2888 (2012)

    CAS  PubMed  Google Scholar 

  15. G.R. Mahdavinia, Z. Rahmani, S. Karami, A. Pourjavadi, Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J. Biomater. Sci. Polym. Ed. 25, 1891–1906 (2014)

    CAS  PubMed  Google Scholar 

  16. M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. 93, 1–49 (2015)

    Google Scholar 

  17. S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra, J. Feijen, T. Vermonden, W.E. Hennink, Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Release 190, 254–273 (2014)

    CAS  PubMed  Google Scholar 

  18. L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications—a review. Eur. J. Pharm. Biopharm. 68, 34–45 (2008)

    CAS  PubMed  Google Scholar 

  19. N. Sood, A. Bhardwaj, S. Mehta, A. Mehta, Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv. 23, 748–770 (2016)

    CAS  Google Scholar 

  20. H. Hong, F. Chen, W. Cai, Pharmacokinetic issues of imaging with nanoparticles: focusing on carbon nanotubes and quantum dots. Mol. Imaging Biol. 15, 507–520 (2013)

    PubMed  PubMed Central  Google Scholar 

  21. Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012)

    CAS  PubMed  Google Scholar 

  22. S.J. Soenen, W.J. Parak, J. Rejman, B. Manshian, (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 115, 2109–2135 (2015)

    CAS  PubMed  Google Scholar 

  23. Y. Min, J. Li, F. Liu, P. Padmanabhan, E. Yeow, B. Xing, Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials. Nanomaterials 4, 129–154 (2014)

    PubMed  PubMed Central  Google Scholar 

  24. D. Ling, T. Hyeon, Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9, 1450–1466 (2013)

    CAS  PubMed  Google Scholar 

  25. R.H. Muller, C. Jacobs, O. Kayser, Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 47, 3–19 (2001)

    CAS  PubMed  Google Scholar 

  26. D.H. Hanna, G.R. Saad, Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg. Chem. 84, 115–124 (2019)

    CAS  PubMed  Google Scholar 

  27. A.M. Craciun, L.M. Tartau, M. Pinteala, L. Marin, Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy. J. Colloid Interface Sci. 536, 196–207 (2019)

    CAS  PubMed  Google Scholar 

  28. M. Zhang, J. Wang, Z. Jin, Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. Int. J. Biol. Macromol. 114, 381–391 (2018)

    CAS  PubMed  Google Scholar 

  29. S. Javanbakht, M. Pooresmaeil, H. Hashemi, H. Namazi, Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int. J. Biol. Macromol. 119, 588–596 (2018)

    CAS  PubMed  Google Scholar 

  30. S.M. Carvalho, A.A.P. Mansur, N.S.V. Capanema, I.C. Carvalho, P. Chagas, L.C.A. de Oliveira, H.S. Mansur, Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. J. Mol. Liq. 266, 425–440 (2018)

    CAS  Google Scholar 

  31. V.S. Ghorpade, A.V. Yadav, R.J. Dias, Citric acid crosslinked β-cyclodextrin/carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 164, 339–348 (2017)

    CAS  PubMed  Google Scholar 

  32. D. Jeong, S.W. Joo, Y. Hu, V.V. Shinde, E. Cho, S. Jung, Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur. Polym. J. 105, 17–25 (2018)

    CAS  Google Scholar 

  33. K. Nakagawa, N. Sowasod, W. Tanthapanichakoon, T. Charinpanitkul, Hydrogel based oil encapsulation for controlled release of curcumin by usinga ternary system of chitosan kappa-carrageenan, and carboxymethylcellulosesodium salt. LWT Food Sci. Technol. 54, 600–605 (2013)

    CAS  Google Scholar 

  34. R. Machín, J.R. Isasi, I. Vélaz, β-Cyclodextrin hydrogels as potential drug delivery systems. Carbohydr. Polym. 87, 2024–2030 (2012)

    Google Scholar 

  35. Z. Naderi, J. Azizian, Synthesis and characterization of carboxymethyl chitosan/Fe3O4 and MnFe2O4 nanocomposites hydrogels for loading and release of curcumin. J. Photochem. Photobiol., B 185, 206–214 (2018)

    CAS  Google Scholar 

  36. E.S. Dragan, A.I. Cocarta, Smart macroporous IPN hydrogels responsive to pH, temperature, and ionic strength: synthesis, characterization, and evaluation of controlled release of drugs. ACS Appl. Mater. Interfaces. 8, 12018–12030 (2016)

    CAS  PubMed  Google Scholar 

  37. E.S. Dragan, A.I. Cocarta, M. Gierszewska, Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment oflysozyme controlled delivery. Colloids Surf. B 139, 33–41 (2016)

    CAS  Google Scholar 

  38. A. Fakhri, M. Naji, P. Afshar Nejad, Adsorption and photocatalysis efficiency of magnetite quantum dots anchored tin dioxide nanofibers for removal of mutagenic compound: toxicity evaluation and antibacterial activity. J. Photochem. Photobiol., B 173, 204–209 (2017)

    CAS  Google Scholar 

  39. W. Gao, R. Razavi, A. Fakhri, Preparation and development of FeS2 Quantum Dots on SiO2 nanostructures immobilized in biopolymers and synthetic polymers as nanoparticles and nanofibers catalyst for antibiotic degradation. Int. J. Biol. Macromol. 114, 357–362 (2018)

    CAS  PubMed  Google Scholar 

  40. M. Hosseini, M. Sarafbidabad, A. Fakhri, Z. Noor Mohammadi, S. Tahami, Preparation and characterization of MnS2/chitosan–sodium alginate and calcium alginate nanocomposites for degradation of analgesic drug: photocorrosion, mechanical, antimicrobial and antioxidant properties studies. Int. J. Biol. Macromol. 118, 1494–1500 (2018)

    CAS  PubMed  Google Scholar 

  41. X. Li, Z. Zhang, A. Fakhri, V.K. Gupta, S. Agarwal, Adsorption and photocatalysis assisted optimization for drug removal by chitosan-glyoxal/Polyvinylpyrrolidone/MoS2 nanocomposites. Int. J. Biol. Macromol. 136, 469–475 (2019)

    CAS  PubMed  Google Scholar 

  42. A.M.K. Pasha, M. Hosseini, A. Fakhri, V.K. Gupta, S. Agarwal, Investigation of photocatalytic process for iron disulfide-bismuth oxide nanocomposites by using response surface methodology: structural and antibacterial properties. J. Mol. Liq. 289, 110950 (2019)

    Google Scholar 

  43. M.A. Ashraf, W.-X. Peng, A. Fakhri, M. Hosseini, S. Chelliapan, Manganese disulfide-silicon dioxide nano-material: synthesis, characterization, photocatalytic, antioxidant and antimicrobial studies. J. Photochem. Photobiol. B 198, 111579 (2019)

    CAS  PubMed  Google Scholar 

  44. A. Fakhri, V.K. Gupta, H. Rabizadeh, S. Agarwal, S. Tahami, Preparation and characterization of WS2 decorated and immobilized on chitosan and polycaprolactone as biodegradable polymers nanofibers: photocatalysis study and antibiotic-conjugated for antibacterial evaluation. Int. J. Biol. Macromol. 120, 1789–1793 (2018)

    CAS  PubMed  Google Scholar 

  45. M. Hosseini, A. Pourabadeh, A. Fakhri, J. Hallajzadeh, S. Tahami, Synthesis and characterization of Sb2S3-CeO2/chitosan-starch as a heterojunction catalyst for photo-degradation of toxic herbicide compound: optical, photo-reusable, antibacterial and antifungal performances. Int. J. Biol. Macromol. 118, 2108–2112 (2018)

    CAS  PubMed  Google Scholar 

  46. V.K. Gupta, A. Fakhri, S. Agarwal, M. Azad, Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic. Int. J. Biol. Macromol 103, 1–7 (2017)

    CAS  PubMed  Google Scholar 

  47. V.K. Gupta, A. Fakhri, S. Agarwal, N. Sadeghi, Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int. J. Biol. Macromol 102, 840–846 (2017)

    CAS  PubMed  Google Scholar 

  48. Y. Gao, B. Mahmoudi, A. Fakhri, H. Aghazadeh, M. Hosseini, H.A. Ebrahimi, Synthesis of MnO2/CdTiO3 nano-structure for high performance photocatalysis and antimicrobial application. Appl. Organomet. Chem. 33, e5051 (2019)

    Google Scholar 

  49. M. Yadollahi, H. Namazi, Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J. Nanopart. Res. 15, 1–9 (2013)

    Google Scholar 

  50. M. Yadollahi, H. Namazi, S. Barkhordari, Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr. Polym. 108, 83–90 (2014)

    CAS  PubMed  Google Scholar 

  51. N. Shamshad Malik, M. Ahmad, M.U. Minhas, Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS ONE 12, 172727 (2017)

    Google Scholar 

  52. J. Smit, H.P.J. Wijn, Ferrites (Phil. Tech. Lib, Netherland, 1959)

    Google Scholar 

  53. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties. Mater. Lett. 65(9), 1438–1440 (2011)

    CAS  Google Scholar 

  54. P.P. Dhawade, R.N. Jagtap, Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv. Appl. Sci. Res. 3, 1372–1382 (2012)

    CAS  Google Scholar 

  55. M.F. Canbolat, A. Celebioglu, T. Uyar, Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf. B 115, 15–21 (2014)

    CAS  Google Scholar 

  56. S. Barkhordari, M. Yadollahi, H. Namazi, pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res. 21(6), 1–9 (2014)

    CAS  Google Scholar 

  57. H. Omidian, K. Park, U. Kandalam, J.G. Rocca, Swelling and Mechanical Properties of Modified HEMA-based Superporous Hydrogels. J. Bioact. Compat. Polym. 25, 483–497 (2010)

    CAS  Google Scholar 

  58. O. Philippova, A. Barabanova, V. Molchanov, A. Khokhlov, Magnetic polymer beads: recent trends and developments in synthetic design and applications. Eur. Polym. J 47, 542–559 (2011)

    CAS  Google Scholar 

  59. S. Barkhordari, M. Yadollahi, Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery. Appl. Clay Sci. 121–122, 77–85 (2016)

    Google Scholar 

  60. F. Marquez, G.M. Herrera, T. Campo, M. Cotto, J. Duconge, J.M. Sanz, E. Elizalde, O. Perales, C. Morant, Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res. Lett. 7, 1–11 (2012)

    Google Scholar 

  61. S. Guerrero, C. Teijón, M. Enriqueta, M.T. José, M.D. Blanco, Characterization and in vivo evaluation of ketotifen-loaded chitosan microspheres. Carbohydr. Polym. 79, 1006–1013 (2010)

    CAS  Google Scholar 

  62. S. Rasouli, S. Davaran, F. Rasouli, M. Mahkam, R. Salehi, Synthesis, characterization and pH-controllable methotrexate release from biocompatible polymer/silica nanocomposite for anticancer drug delivery. Drug Deliv. 21, 155–163 (2014)

    CAS  PubMed  Google Scholar 

  63. S. Likhitkar, A.K. Bajpai, Magnetically controlled release of cis-platin from superparamagnetic starch nanoparticles. Carbohydr. Polym. 87, 300–308 (2012)

    CAS  Google Scholar 

  64. R. Gupta, A.K. Bajpai, Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites. J. Biomater. Sci. 22, 893–918 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks from Science and Research Branch, IAU for accomplishment support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Azizian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, Z., Azizian, J., Moniri, E. et al. Synthesis and Characterization of Carboxymethyl Cellulose/β-Cyclodextrin/Chitosan Hydrogels and Investigating the Effect of Magnetic Nanoparticles (Fe3O4) on a Novel Carrier for a Controlled Release of Methotrexate as Drug Delivery. J Inorg Organomet Polym 30, 1339–1351 (2020). https://doi.org/10.1007/s10904-019-01301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01301-1

Keywords

Navigation