Skip to main content
Log in

Lead Sulphide Nanoparticles as Photocatalyst for the Degradation of Methylene Blue: Effects of pH, Time, Adsorption Kinetics and Recyclability Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We report the synthesis and morphological studies of lead sulphide nanoparticles prepared from lead(II) complexes of morpholine dithiocarbamate (PbS1), thiomorpholine dithiocarbamate (PbS2), and N-(2-hydroxyethyl)phenyl dithiocarbamate (PbS3). Powder X-ray diffraction patterns (p-XRD) of the PbS nanoparticles are indexed to face-centered cubic phase of PbS. High-resolution transmission electron microscopy (HRTEM) micrograph revealed quasi-spherical PbS nanoparticles with particle size in the range 13.86–36.06 nm while scanning electron microscopy (SEM) revealed flaky/spherical/rough surface morphology. Photocatalytic degradation of methylene blue dye by the PbS nanoparticles showed degradation efficiency of 72.6 % for PbS1, 75.9 % for PbS2, and 47.4 % for PbS3. The photodegradation efficiency shows a correlation between efficiency and morphological properties. Total organic content removal by PbS2 is 69.5 % while that of PbS1 is 64.2 % and PbS3 is 40.1 %. The as-prepared PbS nanoparticles exhibited remarkable photostability in the recyclability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.Q. Mamiyev, N.O. Balayeva, Preparation and optical studies of PbS nanoparticles. Opt. Mater. 46, 522–525 (2015)

    CAS  Google Scholar 

  2. M. Mozafari, F. Moztarzadeh, Microstructural and optical properties of spherical lead sulphide quantum dots-based optical sensors. Micro Nano Lett. 6(3), 161–164 (2011)

    CAS  Google Scholar 

  3. M. Shkir, M.T. Khan, I.M. Ashraf, S. AlFaify, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, A. Khan, Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 45(17), 21975–21985 (2019)

    CAS  Google Scholar 

  4. Y. Wang, Z. Liu, N. Huo, F. Li, M. Gu, X. Ling, Y. Zhang, K. Lu, L. Han, H. Fang, A.G. Shulga, Y. Xue, S. Zhou, F. Yang, X. Tang, J. Zheng, M. Antonietta Loi, G. Konstantatos, W. Ma, Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 10(1), 5136 (2019)

    PubMed  PubMed Central  Google Scholar 

  5. W. Wu, Y. He, Y. Wu, T. Wu, Self-template synthesis of PbS nanodendrites and its photocatalytic performance. J. Alloys Compd. 509(38), 9356–9362 (2011)

    CAS  Google Scholar 

  6. R. Abargues, J. Navarro, P.J. Rodríguez-Cantó, A. Maulu, J.F. Sánchez-Royo, J.P. Martínez-Pastor, Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach. Nanoscale 11(4), 1978–1987 (2019)

    CAS  PubMed  Google Scholar 

  7. M.M. Tavakoli, A. Simchi, H. Aashuri, Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells. Mater. Chem. Phys. 156, 163–169 (2015)

    CAS  Google Scholar 

  8. W. Meng, W. Yuan, Z. Wu, X. Wang, W. Xu, L. Wang, Q. Zhang, C. Zhang, J. Wang, Q. Song, Mechanochemical synthesis of lead sulfide (PbS) nanocrystals from lead oxide. Powder Technol. 347, 130–135 (2019)

    CAS  Google Scholar 

  9. V.R. Raja, D.R. Rosaline, A. Suganthi, M. Rajarajan, Facile fabrication of PbS/MoS2 nanocomposite photocatalyst with efficient photocatalytic activity under visible light. Solid State Sci. 67, 99–108 (2017)

    CAS  Google Scholar 

  10. S. Liu, L. Han, H. Liu, Synthesis, characterization and photocatalytic performance of PbS/Ni2P flowers. Appl. Surf. Sci. 387, 393–398 (2016)

    CAS  Google Scholar 

  11. K. Hedayati, M. Kord, M. Goodarzi, D. Ghanbari, S. Gharigh, Photo-catalyst and magnetic nanocomposites: hydrothermal preparation of core–shell Fe3O4@ PbS for photo-degradation of toxic dyes. J. Mater. Sci. 28(2), 1577–1589 (2017)

    CAS  Google Scholar 

  12. R. Gaur, P. Jeevanandam, PbS micro-nanostructures with controlled morphologies by a novel thermal decomposition approach. J. Nanopart. Res. 18(3), 80 (2016)

    Google Scholar 

  13. A.M. Ahmed, M. Rabia, M. Shaban, The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv. 10(24), 14458–14470 (2020)

    CAS  Google Scholar 

  14. X. Changqi, Z. Zhicheng, W. Hailong, Y. Qiang, A novel way to synthesize lead sulfide QDs via γ-ray irradiation. Mater. Sci. Eng. B 104(1), 5–8 (2003)

    Google Scholar 

  15. M. Salavati-Niasari, A. Sobhani, S. khoshrooz, N. Mirzanasiri, Preparation and characterization of PbS nanoparticles via cyclic microwave radiation using precursor of lead(II) oxalate. J. Clust. Sci. 25(4), 937–947 (2014)

    CAS  Google Scholar 

  16. A.E. Oluwalana, P.A. Ajibade, Synthesis and crystal structures of Pb(II) dithiocarbamates complexes: precursors for PbS nanophotocatalyst. J. Sulfur Chem. 41(2), 182–199 (2020)

    CAS  Google Scholar 

  17. M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844–1849 (2003)

    CAS  Google Scholar 

  18. N.F. AndradeNeto, O.B.M. Ramalho, H. Fantucci, R.M. Santos, M.R.D. Bomio, F.V. Motta, Fast and facile sonochemical synthesis of Mg- and Zn-doped PbS nanospheres: optical properties and photocatalytic activity. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03975-7

    Article  Google Scholar 

  19. A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization and photoluminescence of PbS nanocubes synthesized by a solvothermal method. Chalcogenide Lett 8(5), 297–300 (2011)

    CAS  Google Scholar 

  20. A. Angeloski, A.R. Gentle, J.A. Scott, M.B. Cortie, J.M. Hook, M.T. Westerhausen, M. Bhadbhade, A.T. Baker, A.M. McDonagh, From Lead(II) dithiocarbamate precursors to a fast response PbS positive temperature coefficient thermistor. Inorg. Chem. 57(4), 2132–2140 (2018)

    CAS  PubMed  Google Scholar 

  21. X. Duan, J. Ma, Y. Shen, W. Zheng, A novel PbS hierarchical superstructure guided by the balance between thermodynamic and kinetic control via a single-source precursor route. Inorg. Chem. 51(2), 914–919 (2012)

    CAS  PubMed  Google Scholar 

  22. S.A. Saah, N. Boadi, D. Adu-Poku, C. Wilkins, Lead ethyl dithiocarbamates: efficient single-source precursors to PbS nanocubes. R. Soc. Open Sci. 6(10), 190943 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Giansante, I. Infante, E. Fabiano, R. Grisorio, G.P. Suranna, G. Gigli, Darker-than-Black” PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 137(5), 1875–1886 (2015)

    CAS  PubMed  Google Scholar 

  24. N.C. Anderson, M.P. Hendricks, J.J. Choi, J.S. Owen, Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135(49), 18536–18548 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. M. Navaneethan, K. Nisha, S. Ponnusamy, C. Muthamizhchelvan, Optical, structural and surface morphological studies of n-methylaniline capped lead sulphide nanoparticles. Rev. Adv. Mater. Sci 21, 217–224 (2009)

    CAS  Google Scholar 

  26. P. Pathak, M. Podzorski, D. Bahnemann, V.R. Subramanian, One-pot fabrication of high coverage PbS quantum dot nanocrystal-sensitized titania nanotubes for photoelectrochemical processes. J. Phys. Chem. C 122(25), 13659–13668 (2018)

    CAS  Google Scholar 

  27. V. Jyothilakshmi, N. Bhabhina, M. Dharsana, S. Swaminathan, Wet chemical synthesis of lead sulfide nanoparticles and its application as light harvester in photovoltaic cell. Mater. Today 33, 21252129 (2020)

    Google Scholar 

  28. M. Kord, K. Hedayati, M. Farhadi, Green synthesis and characterization of flower-like PbS and metal-doped nanostructures via hydrothermal method. Main Group Met. Chem. 40(1–2), 35–40 (2017)

    CAS  Google Scholar 

  29. A. Borhade, B. Uphade, A comparative study on characterization and photocatalytic activities of PbS and Co doped PbS nanoparticles. Chalcogenide Lett 9, 299–306 (2012)

    CAS  Google Scholar 

  30. N.F. Andrade Neto, Y.G. Oliveira, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method. J. Mater. Sci. 29(22), 19052–19062 (2018)

    CAS  Google Scholar 

  31. Q. Yu, M. Sun, Y. Wang, M. Li, L. Liu, The interaction between lead sulfide nano-dendrites and Saccharomyce cerevisiae is involved in nanotoxicity. RSC Adv. 4(39), 20371–20378 (2014)

    CAS  Google Scholar 

  32. J. Kim, H.-R. Kim, B.-R. Lee, E.-S. Choi, S.-I. In, E. Kim, Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells. Int. J Nanomed. 10, 5513 (2015)

    Google Scholar 

  33. Y.-J. Cheng, R. Wang, S. Wang, X.-J. Xi, L.-F. Ma, S.-Q. Zang, Encapsulating [Mo3S13]2– clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chem. Commun. 54(96), 13563–13566 (2018)

    CAS  Google Scholar 

  34. H. Zhang, Y. Gao, G. Zhu, B. Li, J. Gou, X. Cheng, Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Sep. Purif. Technol. 227, 115697 (2019)

    CAS  Google Scholar 

  35. H. Khojasteh, M. Salavati-Niasari, F.S. Sangsefidi, Photocatalytic evaluation of RGO/TiO2NWs/Pd-Ag nanocomposite as an improved catalyst for efficient dye degradation. J. Alloys Compd. 746, 611–618 (2018)

    CAS  Google Scholar 

  36. N. Solomane, P.A. Ajibade, Synthesis and crystal structure of bis (thiomorpholinyldithiocarbamato) Cu(II) complex and its use as precursor for CuS nanoparticles photocatalyst for the degradation of organic dyes. J. Sulfur Chem. 42, 167–179 (2020)

    Google Scholar 

  37. N. Solomane, P.A. Ajibade, B. Omondi, Crystal structure of sodium morpholine-4-carbodithioate,(C5H12NNaO3S2). Z. Kristallogr. NCS 234(4), 605–607 (2019)

    CAS  Google Scholar 

  38. T. Chintso, P.A. Ajibade, Synthesis and structural studies of hexadecylamine capped lead sulfide nanoparticles from dithiocarbamate complexes single source precursors. Mater. Lett. 141, 1–6 (2015)

    CAS  Google Scholar 

  39. P.A. Ajibade, A.E. Oluwalana, Synthesis and crystal structure of bis(O-methyl hydrogenato carbonodithioate)-Pb(II): structural, optical and photocatalytic studies of PbS nanoparticles from the complex. J. Coord. Chem. 72(22–24), 3575–3588 (2019)

    CAS  Google Scholar 

  40. Y. Wang, A. Tang, K. Li, C. Yang, M. Wang, H. Ye, Y. Hou, F. Teng, Shape-controlled synthesis of PbS nanocrystals via a simple one-step process. Langmuir 28(47), 16436–16443 (2012)

    CAS  PubMed  Google Scholar 

  41. S.K. Tammina, B.K. Mandal, N.K. Kadiyala, Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ. Nanotechnol. Monit. Manag. 10, 339–350 (2018)

    Google Scholar 

  42. A.E. Oluwalana, P.A. Ajibade, Structural, optical and photocatalytic studies of hexadecylamine-capped lead sulfide nanoparticles. Int. J. Ind. Chem. 11(4), 249–260 (2020)

    CAS  Google Scholar 

  43. T. Thilagavathi, D. Venugopal, R. Marnadu, J. Chandrasekaran, T. Alshahrani, M. Shkir, An investigation on microstructural, morphological, optical, photoluminescence and photocatalytic activity of WO3 for photocatalysis applications: an effect of annealing. J. Inorg. Organomet. Polym. Mater. doi:10.1007/s10904-020-01731-2 (2020)

  44. M.M. Tavakoli, A. Tayyebi, A. Simchi, H. Aashuri, M. Outokesh, Z. Fan, Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol. J. Nanopart. Res. 17(1), 9 (2015)

    Google Scholar 

  45. A. Borhade, B. Uphade, A comparative study on characterization and photocatalytic activities of PbS and Co doped PbS nanoparticles. Chalcogenide Lett. 9(7), 299–306 (2012)

    CAS  Google Scholar 

  46. Y. Yücel, E. Yücel, Synthesis and characterization of lead sulfide thin films by coumarin assisted CBD method. Optik 164, 263–270 (2018)

    Google Scholar 

  47. M. Danish, M. Muneer, Novel ZnSQDs-SnO2/g-C3N4 nanocomposite with enhanced photocatalytic performance for the degradation of different organic pollutants in aqueous suspension under visible light. J. Phys. Chem. Solids 149, 109785 (2021)

    CAS  Google Scholar 

  48. R. Sharma, S. Bansal, S. Singhal, Tailoring the photo-Fenton activity of spinel ferrites (MFe 2 O 4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv. 5(8), 6006–6018 (2015)

    CAS  Google Scholar 

  49. R.M. Mohamed, D.L. McKinney, W.M. Sigmund, Enhanced nanocatalysts. Mater. Sci. Eng. 73(1), 1–13 (2012)

    CAS  Google Scholar 

  50. H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J. Hazard. Mater. 162(2–3), 674–681 (2009)

    CAS  PubMed  Google Scholar 

  51. D. Samanta, P. Basnet, T.I. Chanu, S. Chatterjee, Biomolecule assisted morphology-controllable synthesis of zinc sulphide nanomaterials for efficient photocatalytic activity under solar irradiation. J. Alloys Compd. 844, 155810 (2020)

    CAS  Google Scholar 

  52. M. Shkir, I. Ashraf, S. AlFaify, Surface area, optical and electrical studies on PbS nanosheets for visible light photo-detector application. Phys. Scr. 94(2), 025801 (2019)

    CAS  Google Scholar 

  53. L. Shao-You, C. Yuan-Dao, Q. Tao-Yu, O. Li-Hui, Z. Cheng-Gang, F. Qing-Ge, Sulfur doped lead monoxide superfine powder materials: solid-state synthesis, characterization, adsorption and photocatalytic property of methylene blue. J. Inorg. Organomet. Polym Mater. 28(6), 2584–2595 (2018)

    Google Scholar 

  54. A. Santra, G. Mondal, M. Acharjya, P. Bera, A. Jana, S.I. Seok, P. Bera, New pyrazole based single precursor for the surfactantless synthesis of visible light responsive PbS nanocrystals: synthesis, X-ray crystallography of ligand and photocatalytic activity. Nano-Struct Nano-Objects 10, 91–99 (2017)

    CAS  Google Scholar 

  55. H. Karimi, H.R. Rajabi, L. Kavoshi, Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: a comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots. J. Photochem. Photobiol. A 397, 112534 (2020)

    CAS  Google Scholar 

  56. J.S. Suroshe, S. Mlowe, S.S. Garje, N. Revaprasadu, Preparation of Iron sulfide nanomaterials from Iron(II) thiosemicarbazone complexes and their application in photodegradation of methylene blue. J. Inorg. Organomet. Polym Mater. 28(3), 603–611 (2018)

    CAS  Google Scholar 

  57. V.G. Warrier, A. Nizam, G. Nagaraju, Highly efficient photocatalytic conversion of amine to amide and degradation of methylene blue using BiOCl–TiO2 Nano Heterostructures. J. Inorg. Organomet. Polym Mater. 30(8), 3143–3157 (2020)

    CAS  Google Scholar 

  58. K. Uma, K. Munusamy, E. Munirathinam, T.C.-K. Yang, J.-H. Lin, D. Kannaiyan, Active synthesis of graphene nanosheet-embedded PbS octahedral nanocubes for prompt sonocatalytic degradation. J. Inorg. Organomet. Polym Mater. 30(9), 3797–3807 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of the National Research Foundation (NRF) South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ajibade.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibade, P.A., Mbuyazi, T.B. & Oluwalana, A.E. Lead Sulphide Nanoparticles as Photocatalyst for the Degradation of Methylene Blue: Effects of pH, Time, Adsorption Kinetics and Recyclability Studies. J Inorg Organomet Polym 31, 2197–2208 (2021). https://doi.org/10.1007/s10904-021-01957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01957-8

Keywords

Navigation