Skip to main content
Log in

Thermoelectric Power and Thermal Conduction Studies on the Gd Substituted BPSCCO (2234) Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Measurements of the electrical resistance (R-T), thermoelectric power (S-T) and thermal conductivity (κ-T) have been carried out on the superconductor Bi1.7Pb0.3-x Gd x Sr2Ca3Cu4O12+y , (0.01 ≤ x ≤ 0.1). According to the XRD patterns the volume fraction of the Bi-2223 phase decreases in favor of Bi-2212. All the samples show normal metallic behavior down to their relevant transition temperature, T c . T c -values decrease significantly with increasing Gd concentration in the system. The hole concentration per Cu has been calculated by using the Presland method and found to decrease with increasing Gd content. The thermoelectric power values of the samples are positive and increase in magnitude with increasing the substitution level. The results obtained have been analyzed in terms of “Two band model with linear T-term” and “Xin’ s two band model”. A very good agreement between the first model and our thermoelectric power data was obtained, but the fit to the second model was poor. The substitution has considerable effect on the thermal conductivity, κ. The magnitude of κ is suppressed and a peak appears just below their T c , values but becomes weaker and broader when the Gd concentration is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awana V.P.S, Lal R., Narlikar A.V. (1995). J. Phys.: Condens. Matter. 7:L171

    Article  ADS  Google Scholar 

  2. Aksan M.A., Yakıncı M.E., Balcı Y. (2002). J. Supercond. 15:553

    Google Scholar 

  3. Aksan M.A., Yakıncı M.E., Balcı Y., (2000). Supercond. Sci. Technol. 13:955

    Article  ADS  Google Scholar 

  4. Yakıncı M.E. (1997). J. Phys: Condens. Matter. 9:1105

    Article  ADS  Google Scholar 

  5. Ibrahim M.M., Khalil S.M., and Ahmed A.M. (2000). J Phys Chem Solids 61:1553

    Article  ADS  Google Scholar 

  6. Sen P., Bandyopadhyay S.K., Nambissan P.M.G, Ganguly R., Barat P., Mukherjee P. (2004). Physica C 407:55

    Article  ADS  Google Scholar 

  7. Chigvinadze J.G., Iashvili A.A., Machaidze T.V. (2002). Phys. Lett. A 300:524

    Article  ADS  Google Scholar 

  8. Marinkovic B.A., Jardim P.M., Rizzo F., Mancic L., Milosevic O. (2005). Mater. Chem. Phys. 94:233

    Article  Google Scholar 

  9. Ekicibil A., Coskun A., Ozcelik B., Kiymac K., (2005). J. Low Temp. Phys. 140:105

    Article  Google Scholar 

  10. Yakıncı M.E. (1996). J. Low Temp. Phys. 105:1535

    Article  Google Scholar 

  11. Memon A. and Tanner D.B., (2004). Int. J. Infrared. Mıllı. 25:1423

    Article  Google Scholar 

  12. Zhang H., Zhao Y., Cheng C.H., (1999). Supercond. Sci. Technol. 12:1163

    Article  ADS  Google Scholar 

  13. Spiller D.M., Yang Y., Beduz C., Pham K., Sparrowe D., Riddle R. (1993). Physica C 319:50

    Article  ADS  Google Scholar 

  14. Chatterjee S., Banerjee S., Mollah S., Chaudhuri B.K., (1996). Phys. Rev. B 53:5942

    Article  ADS  Google Scholar 

  15. Chatterjee S., Chaudhuri B.K., Komatsu T., (1997). Solid State Commun. 104:67

    Article  Google Scholar 

  16. Bhattacharya S., Chatterjee S., Goswami K., Chaudhuri B.K., (1998). J. Mater. Sci. Lett. 17:1575

    Article  Google Scholar 

  17. Chatterjee S., Pal P.K., Bhattacharya S., Chaudhuri B.K., (1998). Phys. Rev. B 58:12427

    Article  ADS  Google Scholar 

  18. Barik H.K., Bhattacharya S., Chatterjee S., Pal P.K., Chaudhuri B.K., (1999) Phılos. Mag. B 79:1161

    Article  Google Scholar 

  19. Aksan M.A., Yakıncı M.E. (2004) J. Alloy Comp. 385:33

    Article  Google Scholar 

  20. Cloots R., Bougrine H., Houssa M., Stassen S., D’Urzo L., Rulmont A., Ausloss M. (1994). Physica C 231:259

    Article  ADS  Google Scholar 

  21. Dorbolo S., Ausloss M., Bougrine H., Robertz B., Cloots R., Mucha J., Durczewski K. (1999). J. Supercond. 12:623

    Article  Google Scholar 

  22. Ozhanli Z., Yakincı M.E., Balcı Y., Aksan M.A., (2002). J. Supercond. 15:543

    Article  Google Scholar 

  23. Coşkun A., Ekicibil A., Özçelik B., Kıymaç K. (2005). Chinese. J. Phys. 43(2):372

    Google Scholar 

  24. Ekicibil A., Coşkun A., Özçelik B., Kıymaç K. (2004). Modern. Phys. Lett. B 18(23):1

    MathSciNet  Google Scholar 

  25. Ekicibil A., Coşkun A., Özçelik B., Kıymaç K., (2005). Modern. Phys. Lett B, 19(6):331

    Article  ADS  Google Scholar 

  26. Basak S. and Ghatak S.K. (1999) Int. J. Mod. Phys. B 13:1633

    Article  ADS  Google Scholar 

  27. Zhang L., Liu C., Yang X., Han Q. (2000) Physica B 279:230

    Article  ADS  Google Scholar 

  28. Forro L., Raki M., Henry J.Y., Ayache C., (1989). Solid State Commun. 69:1097

    Article  Google Scholar 

  29. Ikegawa S., Wada T., Yamashida T., Ichinose A., Matsuura K., Kubo K., Yamauchi H., Tanaka S. (1991). Phys. Rev. B 43:11508

    Article  ADS  Google Scholar 

  30. Gassumyants V.E., Kaidanov V.I., Vladimirskaya E.V. (1995) Physica C 248:255

    Article  ADS  Google Scholar 

  31. Xin Y., Wong K.W., Fan C.X., Sheng Z.Z., Chan F.T. (1993). Phys. Rev. B 48:557

    Article  ADS  Google Scholar 

  32. Wang R., Sekine H., Jin H. (1996). Supercond. Sci. Technol. 9:529

    Article  ADS  Google Scholar 

  33. Uher C. and Wang W.N. (1989) Phys. Rev. B 40:2694

    Article  ADS  Google Scholar 

  34. Chanda B. and Dey T.K. (1994). Solid State Commun. 89:353

    Article  Google Scholar 

  35. Aksan M.A., Yakinci M.E., Balci Y., Ates H. (1999) J. Low Temp. Phys. 117:957

    Article  Google Scholar 

  36. Natividad E., Castro M., Burriel R., Angurel L.A., Diez J.C., Navarro R. (2002). Supercond. Sci. Technol. 15:1022

    Article  ADS  Google Scholar 

  37. Knizek K., Veverka M., Hadova E., Hejtmanek J., Sedmidubsky D., and Pollert E. (1998). Physica C 302:290

    Article  ADS  Google Scholar 

  38. Houssa M. and Ausloss M., (1995) Phys. Rev. B 51:9372

    Article  ADS  Google Scholar 

  39. Wermbter S. and Tewordt L. (1991). Physica C 183:365

    Article  ADS  Google Scholar 

  40. Castellazi S., Cimberle M.R., Ferdeghini C., Giannini E., Grasso G., Marre D., Putti M., Siri A.S. (1997). Physica C 273:314

    Article  ADS  Google Scholar 

  41. Houssa M., Ausloss M., Sergeenkov S. (1996). J. Phys: Condens. Matter. 8:2043

    Article  ADS  Google Scholar 

  42. Tewordt L., Wolkhausen T. (1989) Solid State Commun. 70:839

    Article  Google Scholar 

  43. Peacor S.D., Richardson R.A., Nori F., Uher C (1991) Phys Rev B 44:9508

    Article  ADS  Google Scholar 

  44. Yu R.C., Salamon M.B., Lu J.P., Lee W.C., (1992) Phys. Rev. Lett. 69:1431

    Article  ADS  Google Scholar 

  45. Lussier B., Elman B., Taillefer L. (1994). Phys. Rev. Lett. 73:3294

    Article  ADS  Google Scholar 

  46. Aubin H., Behnia K., Ribault M., Taillefer L., Gagnon R. (1997). Z. Phys. B 103:149

    Article  Google Scholar 

  47. Krishana K., Haris J.M., Ong N.P. (1995). Phys. Rev. Lett. 75:3529

    Article  ADS  Google Scholar 

  48. Hirschfeld P.J., Putikka W.O. (1996). Phys. Rev. Lett. 77:3909

    Article  ADS  Google Scholar 

  49. Presland M.R., Tallon J.L., Buckley R.G., Liu R.S., Flower N.E. (1991). Physica C 176:95

    Article  ADS  Google Scholar 

  50. Sekhar M.C. and Suryanarayana S.V. (2004). Physica C 415:209

    Article  ADS  Google Scholar 

  51. Sita D.R. and Singh R. (1998) Physica C 296:21

    Article  ADS  Google Scholar 

  52. Neeleshwar S., Muralidhar M., Murakami M., Reddy P.V. (2003) Physica C 391:131

    Article  ADS  Google Scholar 

  53. Obertelli S.D., Cooper J.R., Tallon J.L. (1992). Phys Rev B 46:14928

    Article  ADS  Google Scholar 

  54. Wang R., Sekine H., Jin H. (1996). Supercond. Sci. Technol. 9:529

    Article  ADS  Google Scholar 

  55. Chen X.H., Li T.F., Yu M., Ruan K.Q., Wang C.Y., Cao L.Z. (1997). Physica C 290:317

    Article  ADS  Google Scholar 

  56. Mandal J.B., Das A.N., Ghosh B. (1996). J. Phys. Condens. Matter 8:3047

    Article  ADS  Google Scholar 

  57. Gottwick U., Gloss K., Horn S., Steglich F., Grewe N. (1985) J Magn Magn Mater 47–48:536

    Article  Google Scholar 

  58. Putti M., Ferdeghini C., Grasso G., Manca A., Siri A.S., Goldacker W. (2000). Physica C 341–348:2585

    Article  Google Scholar 

  59. Cohn J.L., Skelton E.F., Wolf S.A., Liu J.Z., Shelton R.N. (1992). Phys. Rev. B 45:13144

    Article  ADS  Google Scholar 

  60. Matsukawa M., Mizukoshi T., Noto K., Shiohara Y., (1996). Phys. Rev. B 53:R6034

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Özçelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkurt, B., Ekicibil, A., Aksan, M.A. et al. Thermoelectric Power and Thermal Conduction Studies on the Gd Substituted BPSCCO (2234) Superconductors. J Low Temp Phys 147, 31–48 (2007). https://doi.org/10.1007/s10909-006-9296-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9296-3

Keywords

PACS Numbers

Navigation