Skip to main content
Log in

Hydrodynamic Instability and Turbulence in Quantum Fluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superfluid turbulence consisting of quantized vortices is called quantum turbulence (QT). Quantum turbulence and quantized vortices were discovered in superfluid 4He about 50 years ago, but innovation has occurred recently in this field. One is in the field of superfluid helium. Statistical quantities such as energy spectra and probability distribution function of the velocity field have been accessible both experimentally and numerically. Visualization technique has developed and succeeded in the direct visualization of quantized vortices. The other innovation is in the field of atomic Bose-Einstein condensation. The modern optical technique has enabled us to control and visualize directly the condensate and quantized vortices. Various kinds of hydrodynamic instability have been revealed. Even QT is realized experimentally. This article describes such recent developments as well as the motivation of studying QT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.P. Halperin, M. Tsubota (eds.), Progress in Low Temperature Physics, vol. XVI (Elsevier, Amsterdam, 2008)

    Google Scholar 

  2. M. Tsubota, J. Phys. Soc. Jpn. 77, 111006 (2008)

    Article  ADS  Google Scholar 

  3. W.F. Vinen, J. Low Temp. Phys. 161, 419 (2010)

    Article  ADS  Google Scholar 

  4. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 011301 (2012)

    Article  ADS  Google Scholar 

  5. M. Tsubota, K. Kasamatsu, M. Kobayashi, arXiv:1004.5458

  6. C.J. Gorter, J.H. Mellink, Physica 15, 285 (1949)

    Article  ADS  Google Scholar 

  7. R.P. Feynman, in Progress in Low Temperature Physics, vol. I, ed. by C.J. Gorter (North-Holland, Amsterdam, 1955), p. 17

    Google Scholar 

  8. W.F. Vinen, Proc. R. Soc. A 240, 114 (1957)

    Article  ADS  Google Scholar 

  9. W.F. Vinen, Proc. R. Soc. A 240, 128 (1957)

    Article  ADS  Google Scholar 

  10. W.F. Vinen, Proc. R. Soc. A 242, 493 (1957)

    Article  ADS  Google Scholar 

  11. W.F. Vinen, Proc. R. Soc. A 243, 400 (1957)

    Article  ADS  Google Scholar 

  12. W.F. Vinen, Proc. R. Soc. A 260, 218 (1961)

    Article  ADS  Google Scholar 

  13. J.T. Tough, in Progress in Low Temperature Physics, vol. VIII, ed. by D.F. Brewer (North-Holland, Amsterdam, 1982), p. 133

    Google Scholar 

  14. K.W. Schwarz, Phys. Rev. B 31, 5782 (1985)

    Article  ADS  Google Scholar 

  15. K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)

    Article  ADS  Google Scholar 

  16. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  17. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  18. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941)

    Google Scholar 

  19. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941)

    ADS  Google Scholar 

  20. A.N. Kolmogorov, Proc. R. Soc. Ser. A 434, 9 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. A.N. Kolmogorov, Proc. R. Soc. Ser. A 434, 15 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. N. Sasa, T. Kano, M. Machida, V.S. L’vov, O. Rudenko, M. Tsubota, Phys. Rev. B 84, 54525 (2011)

    Article  ADS  Google Scholar 

  23. V.S. L’vov, S. Nazarenko, O. Rudenko, J. Low Temp. Phys. 153, 140 (2008)

    Article  ADS  Google Scholar 

  24. S.W. Van Sciver, C.F. Barenghi, in Progress in Low Temperature Physics, vol. XVI, ed. by W.P. Halperin, M. Tsubota (Elsevier, Amsterdam, 2008), p. 195

    Google Scholar 

  25. T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  26. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  27. M.S. Paoletti, M.E. Fisher, D.P. Lathrop, Physica D 239, 1367 (2010)

    Article  ADS  MATH  Google Scholar 

  28. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, J. Phys. Soc. Jpn. 77, 111007 (2008)

    Article  ADS  Google Scholar 

  29. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010)

    Article  ADS  Google Scholar 

  30. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)

    Article  ADS  Google Scholar 

  31. S.Z. Alamri, A.J. Youd, C.F. Barenghi, Phys. Rev. Lett. 101, 215302 (2008)

    Article  ADS  Google Scholar 

  32. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  33. K. Kasamatsu, M. Tsubota, in Progress in Low Temperature Physics, vol. XVI, ed. by W.P. Halperin, M. Tsubota (Elsevier, Amsterdam, 2008), p. 351

    Google Scholar 

  34. N.G. Berloff, B.V. Svistunov, Phys. Rev. A 66, 013603 (2002)

    Article  ADS  Google Scholar 

  35. N.G. Parker, C.S. Adams, Phys. Rev. Lett. 95, 145301 (2005)

    Article  ADS  Google Scholar 

  36. M. Kobayashi, M. Tsubota, Phys. Rev. A 76, 045603 (2007)

    Article  ADS  Google Scholar 

  37. E.A.L. Henn et al., Phys. Rev. A 79, 043618 (2009)

    Article  ADS  Google Scholar 

  38. E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009)

    Article  ADS  Google Scholar 

  39. T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  40. D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Halls, Science 329, 1182 (2010)

    Article  ADS  Google Scholar 

  41. C.N. Weiler et al., Nature 455, 948 (2008)

    Article  ADS  Google Scholar 

  42. K. Sasaki, N. Suzuki, H. Saito, Phys. Rev. Lett. 104, 150404 (2010)

    Article  ADS  Google Scholar 

  43. T. Aioi, T. Kadokura, T. Kishimoto, H. Saito, Phys. Rev. X 1, 021003 (2011)

    Article  Google Scholar 

  44. L. Skrbek, W.F. Vinen, in Progress in Low Temperature Physics, vol. XVI, ed. by W.P. Halperin, M. Tsubota (Elsevier, Amsterdam, 2008), p. 195

    Google Scholar 

  45. K. Fujimoto, M. Tsubota, Phys. Rev. A 82, 043611 (2010)

    Article  ADS  Google Scholar 

  46. K. Fujimoto, M. Tsubota, Phys. Rev. A 83, 053609 (2011)

    Article  ADS  Google Scholar 

  47. K. Kasamatsu, M. Tsubota, M. Ueda, Int. J. Mod. Phys. B 19, 1835 (2005)

    Article  ADS  MATH  Google Scholar 

  48. C.K. Law, C.M. Chan, P.T. Leung, M.-C. Chu, Phys. Rev. A 63, 063612 (2001)

    Article  ADS  Google Scholar 

  49. H. Takeuchi, S. Ishino, M. Tsubota, Phys. Rev. Lett. 105, 205301 (2010)

    Article  ADS  Google Scholar 

  50. S. Ishino, M. Tsubota, H. Takeuchi, Phys. Rev. A 83, 063602 (2011)

    Article  ADS  Google Scholar 

  51. C. Hamner, J.J. Chang, P. Engels, M.A. Hoefer, Phys. Rev. Lett. 106, 065302 (2011)

    Article  ADS  Google Scholar 

  52. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)

    Article  ADS  Google Scholar 

  53. K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, Phys. Rev. A 80, 063611 (2009)

    Article  ADS  Google Scholar 

  54. S. Gautam, D. Angom, Phys. Rev. A 81, 053616 (2010)

    Article  ADS  Google Scholar 

  55. A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, M. Marklund, Phys. Rev. A 82, 043608 (2010)

    Article  ADS  Google Scholar 

  56. D.M. Stamper-Kurn, M. Ueda, arXiv:1205.1888

  57. K. Fujimoto, M. Tsubota, Phys. Rev. A 85, 033642 (2012)

    Article  ADS  Google Scholar 

  58. K. Fujimoto, M. Tsubota, Phys. Rev. A 85, 053641 (2012)

    Article  ADS  Google Scholar 

  59. M. Vengalattore, S.R. Leslie, J. Guzman, D.M. Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008)

    Article  ADS  Google Scholar 

  60. V.B. Eltsov, R. de Graaf, R. Hänninen, M. Krusius, R.E. Solntsev, V.S. L’vov, A.I. Golov, P.M. Walmsley, in Progress in Low Temperature Physics, vol. XVI, ed. by W.P. Halperin, M. Tsubota (Elsevier, Amsterdam, 2008), p. 45

    Google Scholar 

  61. S.N. Fisher, G.R. Pickett, in Progress in Low Temperature Physics, vol. XVI, ed. by W.P. Halperin, M. Tsubota (Elsevier, Amsterdam, 2008), p. 147

    Google Scholar 

  62. A.C. White, C.F. Barenghi, A. Shukurov, K. Subramanian, Phys. Rev. Lett. 80, 055301 (2009)

    Article  Google Scholar 

  63. H. Adachi, M. Tsubota, Phys. Rev. B 83, 132503 (2011)

    Article  ADS  Google Scholar 

  64. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100, 245301 (2008)

    Article  ADS  Google Scholar 

  65. A.W. Baggaley, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 85, 060501 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tsubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsubota, M. Hydrodynamic Instability and Turbulence in Quantum Fluids. J Low Temp Phys 171, 571–581 (2013). https://doi.org/10.1007/s10909-012-0831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0831-0

Keywords

Navigation