Skip to main content
Log in

Hyper-chaotic Magnetisation Dynamics of Two Interacting Dipoles

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The present work is a numerical study of the deterministic spin dynamics of two interacting anisotropic magnetic particles in the presence of a time-dependent external magnetic field using the Landau–Lifshitz equation. Particles are coupled through the dipole–dipole interaction. The applied magnetic field is made of a constant longitudinal amplitude component and a time-dependent transversal amplitude component. Dynamical states obtained are represented by their Lyapunov exponents and bifurcation diagrams. The dependence on the largest and the second largest Lyapunov exponents, as a function of the magnitude and frequency of the applied magnetic field, and the relative distance between particles, is studied. The system presents multiple transitions between regular and chaotic behaviour depending on the control parameters. In particular, the system presents consistent hyper-chaotic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  2. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  3. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  4. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  5. G. Gibson, C. Jeffries, Phys. Rev. A 29, 811 (1984)

    Article  ADS  Google Scholar 

  6. F.M. de Aguiar, A. Azevedo, S.M. Rezende, Phys. Rev. B 39, 9448 (1989)

    Article  ADS  Google Scholar 

  7. J. Becker, F. Rodelsperger, Th Weyrauch, H. Benner, W. Just, A. Cenys, Phys. Rev. E 59, 1622 (1999)

    Article  ADS  Google Scholar 

  8. J. Cai, Y. Kato, A. Ogawa, Y. Harada, M. Chiba, T. Hirata, J. Phys. Soc. Jpn. 71, 3087 (2002)

    Article  ADS  Google Scholar 

  9. M.G. Cottam (ed.), Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices (World Scientific, Singapore, 1992)

    Google Scholar 

  10. P.E. Wigen (ed.), Nonlinear Phenomena and Chaos in Magnetic Materials (World Scientific, Singapore, 1994)

    Google Scholar 

  11. L. Landau, Collected Papers of Landau (Pergamon, New York, 1965)

    Google Scholar 

  12. L.F. Alvarez, O. Pla, O. Chubykalo, Phys. Rev. B 61, 11613 (2000)

    Article  ADS  Google Scholar 

  13. Z. Li, Y.C. Li, S. Zhang, Phys. Rev. B 74, 054417 (2006)

    Article  ADS  Google Scholar 

  14. Z. Li, Y.C. Li, S. Zhang, Phys. Rev. Lett. 99, 134101 (2007)

    Article  ADS  Google Scholar 

  15. H.Z. Xu, X. Chen, J.M. Liu, J. App. Phys. 104, 093919 (2008)

    Article  ADS  Google Scholar 

  16. Y. Lan, Y.C. Li, Nonlinearity 21, 2801 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. D. Laroze, L.M. Perez, Physica B 403, 473 (2008)

    Article  ADS  Google Scholar 

  18. D.V. Vagin, P. Polyakov, J. Appl. Phys. 105, 033914 (2009)

    Article  ADS  Google Scholar 

  19. R.K. Smith, M. Grabowski, R.E. Camley, J. Magn. Magn. Mater. 322, 2127 (2010)

    Article  ADS  Google Scholar 

  20. J. Bragard, H. Pleiner, O.J. Suarez, P. Vargas, J.A.C. Gallas, D. Laroze, Phys. Rev. E 84, 037202 (2011)

    Article  ADS  Google Scholar 

  21. D. Laroze, J. Bragard, O.J. Suarez, H. Pleiner, IEEE Trans. Mag. 47, 10 (2011)

    Article  Google Scholar 

  22. D. Laroze, D. Becerra-Alonso, J.A.C. Gallas, H. Pleiner, IEEE Trans. Magn. 48, 3567 (2012)

    Article  ADS  Google Scholar 

  23. L.M. Pérez, J. Bragard, H.L. Mancini, J.A.C. Gallas, A.M. Cabanas, O.J. Suarez, D. Laroze, Netw. Heterog. Media 10, 209 (2015)

    Article  MathSciNet  Google Scholar 

  24. T. Shinbrot, C. Grebogi, J.A. Yorke, E. Ott, Nature 363, 411 (1993)

    Article  ADS  Google Scholar 

  25. S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza, Phys. Rep. 329, 103 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  26. D. Mentrup, J. Schnack, M. Luban, Physica A 272, 153 (1999)

    Article  ADS  Google Scholar 

  27. D.V. Efremov, R.A. Klemm, Phys. Rev. B 66, 174427 (2002)

    Article  ADS  Google Scholar 

  28. D. Laroze, P. Vargas, Physica B 372, 332 (2006)

    Article  ADS  Google Scholar 

  29. L.M. Pérez, O.J. Suarez, D. Laroze, H.L. Mancini, Cent. Eur. J. Phys. 11, 1629 (2013)

    Google Scholar 

  30. D. Laroze, P. Vargas, C. Cortes, G. Gutierrez, J. Magn. Magn. Mater. 320, 1440 (2008)

    Article  ADS  Google Scholar 

  31. G. Möller, R. Moessner, Phys. Rev. Lett. 96, 237202 (2006)

    Article  ADS  Google Scholar 

  32. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature (Lond.) 439, 303 (2006)

    Article  ADS  Google Scholar 

  33. I.D. Mayergoyz, G. Bertotti, C. Serpico, Nonlinear Magnetization Dynamics in Nanosystems (Elsevier, Dordrecht, 2009)

    MATH  Google Scholar 

  34. R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 1999)

    Google Scholar 

  35. W.F. Brown Jr, J. Appl. Phys. 30, 130s (1959)

    Article  ADS  Google Scholar 

  36. J.L. García-Palacios, F.J. Lázaro, Phys. Rev. B 58, 14937 (1998)

    Article  ADS  Google Scholar 

  37. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. J.A.C. Gallas, Int. J. Bifurc. Chaos 20, 197 (2010). and references therein

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Laroze, H. Pleiner, Commun. Nonlinear Sci. Numer. Simul. 26, 167 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  40. J.A.C. Gallas, Phys. Rev. Lett. 70, 2714 (1993)

    Article  ADS  Google Scholar 

  41. C. Bonatto, J.C. Garreau, J.A.C. Gallas, Phys. Rev. Lett. 95, 143905 (2005)

    Article  ADS  Google Scholar 

  42. D. Laroze, P.G. Siddheshwar, H. Pleiner, Commun. Nonlinear Sci. Numer. Simul. 18, 2436 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  44. X. Batlle, A. Labarta, J. Phys. D 35, R15 (2002)

    Article  ADS  Google Scholar 

  45. P. Landeros, J. Escrig, D. Altbir, D. Laroze, J. d’Albuquerque e Castro, P. Vargas, Phys. Rev. B 65, 094435 (2005)

    Article  ADS  Google Scholar 

  46. H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature (Lond.) 394, 451 (1998)

    Article  ADS  Google Scholar 

  47. Y. Khivintsev, B. Kuanr, T.J. Fal, M. Haftel, R.E. Camley, Z. Celinski, D.L. Mills, Phys. Rev. B 81, 054436 (2010)

    Article  ADS  Google Scholar 

  48. Y. Khivintsev, J. Marsh, V. Zagorodnii, I. Harward, J. Lovejoy, P. Krivosik, R.E. Camley, Z. Celinski, Appl. Phys. Lett. 98, 042505 (2011)

    Article  ADS  Google Scholar 

  49. C. Cheng, W.E. Bailey, Appl. Phys. Lett. 103, 242402 (2013)

    Article  ADS  Google Scholar 

  50. M.G. Phelps, K.L. Livesey, A.M. Ferona, R.E. Camley, EPL 109, 37007 (2015)

    Article  ADS  Google Scholar 

  51. R. Gilmore, M. Lefranc, The Topology of Chaos, Alice in Stretch and Squeeze Land (Wiley, New York, 2002)

    Google Scholar 

Download references

Acknowledgments

We thank R. L. Stamps (University of Glasgow, UK) for invaluable discussions. DU acknowledges the PhD fellowship from the Performance Agreement Project UTA/Mineduc (Universidad de Tarapacá). DBA was supported in part by the Spanish Inter-Ministerial Commission of Science and Technology under Project TIN2014-54583-C2-1-R, the European Regional Development fund, and the “Junta de Andalucía” (Spain), under Project P2011-TIC-7508. LMP and HLM acknowledge partial financial support from the Spanish Ministry of Science and Technology under Contract Nos. FIS2011-24642 and FIS2014-54101-P. DL acknowledges partial financial support from FONDECYT 1120764, Basal Program Center for Development of Nanoscience and Nanotechnology (CEDENNA) FB0807, UTA-Project 8750-12 and Engineering and Physical Sciences Research Council Grant No. EP/L002922/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Laroze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urzagasti, D., Becerra-Alonso, D., Pérez, L.M. et al. Hyper-chaotic Magnetisation Dynamics of Two Interacting Dipoles. J Low Temp Phys 181, 211–222 (2015). https://doi.org/10.1007/s10909-015-1338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1338-2

Keywords

Navigation