Skip to main content
Log in

Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting transition-edge sensor (TES) microcalorimeters are being developed for a variety of potential astrophysics missions, including Athena. The X-ray integral field unit instrument on this mission requires close-packed pixels on a 0.25 mm pitch, and high quantum efficiency between 0.2 and 12 keV. In this work, we describe a new approach with 50 μm square TESs consisting of a Mo/Au bilayer, deposited on silicon nitride membranes to provide a weak thermal conductance to a ~ 50 mK heat bath. Larger TESs usually have additional normal metal stripes on top of the bilayer to reduce the noise. However, we have found that excellent spectral performance can be achieved without the need for any normal metal stripes on top of the TES. A spectral performance of 1.58 ± 0.12 eV at 5.9 keV has been achieved, the best resolution seen in any of our devices with this pixel size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Nandra et al., (2013). arXiv:1306.2307 [astro-ph.HE]

  2. D. Barret et al., Space Telescopes and instrumentation 2014: ultraviolet to gamma ray. Proc. SPIE 9905, 99052F (2016). https://doi.org/10.1117/12.2232432

    Article  Google Scholar 

  3. S.J. Smith et al., Space telescopes and instrumentation 2016: ultraviolet to gamma ray. Proc. SPIE 9905, 99052H (2016). https://doi.org/10.1117/2.2231749

    Article  ADS  Google Scholar 

  4. N. Iyomoto et al., Appl. Phys. Lett. 92, 013508 (2008). https://doi.org/10.1063/1.2830665

    Article  ADS  Google Scholar 

  5. J. Ullom et al., Appl. Phys. Lett. 84, 4206 (2004). https://doi.org/10.1063/1.1753058

    Article  ADS  Google Scholar 

  6. M. Lindeman et al., Nucl. Instr. Methods Phys. Res. A 520, 348 (2004). https://doi.org/10.1016/j.nima.2003.11.264

    Article  ADS  Google Scholar 

  7. N.A. Wakeham et al., J. Low Temp. Phys. This Special Issue LTD17 (2018)

  8. J.E. Sadleir et al., Phys. Rev. B 84, 184502 (2011). https://doi.org/10.1103/PhysRevB.84.184502

    Article  ADS  Google Scholar 

  9. T. Saab et al., Nucl. Instr. Methods Phys. Res. A 559, 712 (2006). https://doi.org/10.1016/j.nima.2005.12.112

    Article  ADS  Google Scholar 

  10. C.N. Bailey et al., J. Low Temp. Phys. 167(3–4), 121 (2012). https://doi.org/10.1007/s10909-012-0562-2

    Article  ADS  Google Scholar 

  11. K. Irwin, G. Hilton, C. Enss, Top. Appl. Phys. (2005). https://doi.org/10.1007/10933596_3

    Article  Google Scholar 

  12. N. Iyomoto et al., J. Low Temp. Phys. (2008). https://doi.org/10.1007/s10909-007-9668-3

    Article  Google Scholar 

  13. W. Yoon et al., IEEE Trans. Appl. Supercond. 27, 4 (2017). https://doi.org/10.1109/TASC.2017.2655718

    Article  Google Scholar 

  14. G. Hölzer et al., Phys. Rev. A 56, 4554 (1997). https://doi.org/10.1103/PhysRevA.56.4554

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine R. Miniussi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miniussi, A.R., Adams, J.S., Bandler, S.R. et al. Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer. J Low Temp Phys 193, 337–343 (2018). https://doi.org/10.1007/s10909-018-1974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1974-4

Keywords

Navigation