Skip to main content
Log in

Influence of Lead Fluoride Substitution on the Physical Properties of (\( {\text{Cu}}_{0.5} {\text{Tl}}_{0.5} \))-1223 Phase

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This work reveals the influence of lead fluoride on the physical properties of high-temperature superconductor samples \( \left( {{\text{Cu}}_{0.5 - x} {\text{Tl}}_{0.5} {\text{Pb}}_{x} } \right){\text{Ba}}_{2} {\text{Ca}}_{2} {\text{Cu}}_{3} {\text{O}}_{10 - \delta - y} {\text{F}}_{y} \), with (0.00 ≤ x ≤ 0.10). The samples under investigation were synthesized by solid-state reaction method at normal pressure. Ion beam analysis techniques were employed to determine the elemental content of the starting materials. The fluorine content “y” was estimated using the proton-induced gamma-ray emission technique by the aid of a 3 MeV proton beam. It was correlated to the oxygen content which was obtained using the Rutherford backscattering technique. Moreover, the samples were characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The XRD data have indicated that the partial replacement of \( {\text{Cu}}^{2 + } \) ions by Pb2+ ions and oxygen by fluorine in the reservoir layer do not alter the tetragonal structure of the samples. On the other hand, the values of the lattice parameters a and c were found to be varied with x according to the difference in the ionic radii of \( {\text{Pb}}^{2 + } \;{\text{and}}\;{\text{Cu}}^{2 + } \) as well as to the oxygen content. SEM analysis has revealed that lead fluoride substitutions improve the inter-grains connectivity of the prepared samples. FTIR analysis has shown that the apical oxygen, planar and the oxygen in reservoirs layers, modes are observed around 415–524 cm−1, 564–579 cm−1 and 680 cm−1, respectively. Moreover, a shift in all absorption peaks was observed in the pure sample of (CuTl-1223) phase, and new peaks were appeared according to the values of x. The physical properties of the samples were investigated using electrical resistivity and ac magnetic susceptibility measurements at different values of the applied ac magnetic field. The granular response shows both inter-granular and intra-granular contributions. The values of the superconducting transition temperature (\( T_{\text{c}} \)) have shown an increase with x up to 0.06 wt% followed by a decrease with further increase in elements substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ihara, Y. Sekita, H. Tateai, N.A. Khan, K. Ishida, E. Harashima, T. Kojima, H. Yamamoto, K. Tanaka, Y. Tanaka, N. Terada, IEEE Trans. Appl. Supercond. 9(2), 1551–1554 (1999)

    Article  ADS  Google Scholar 

  2. R. Awad, A.A. Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24(6), 1947–1956 (2011)

    Article  Google Scholar 

  3. M. Mumtaz, N.A. Khan, S. Abbas, K. Shehzad, Ceram. Int. 40(3), 4187–4191 (2014)

    Article  Google Scholar 

  4. M. Mumtaz, N.A. Khan, F. Ashraf, J. Supercond. Nov. Magn. 24(5), 1547–1551 (2011)

    Article  Google Scholar 

  5. M. Mumtaz, Z. Iqbal, M.R. Hussain, L. Ali, M. Waqee-ur-Rehman, M. Saqib, J. Supercond. Nov. Magn. 31(5), 1315–1321 (2018)

    Article  Google Scholar 

  6. N.M. Hamdan, K.A. Ziq, A.S. Al-Harthi, Phys. C Supercond. 314(1–2), 125–132 (1999)

    Article  ADS  Google Scholar 

  7. M. Enengl, G. Gritzner, J. Supercond. Sci. Technol. 16(8), 956 (2003)

    Article  ADS  Google Scholar 

  8. M. Roumié, B. Nsouli, K. Zahraman, A. Reslan, Nucl. Instrum. Methods Phys. Res. Sect. B 219, 389–393 (2004)

    Article  ADS  Google Scholar 

  9. A. Srour, R. Awad, W. Malaeb et al., J. Low Temp. Phys. 189, 217–229 (2017)

    Article  ADS  Google Scholar 

  10. H. Basma, R. Awad, M. Roumié et al., J. Supercond. Nov. Magn. 29, 179–185 (2016)

    Article  Google Scholar 

  11. G.F. Voronin, S.A. Degterov, J. Solid State Chem. 110(1), 50–57 (1994)

    Article  ADS  Google Scholar 

  12. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloys Compd. 486(1–2), 733–737 (2009)

    Article  Google Scholar 

  13. M. Kühberger, G. Gritzner, J. Phys. C Supercond. 390(3), 263–269 (2003)

    Article  ADS  Google Scholar 

  14. N.H. Mohammed, A.I. Abou-Aly, R. Awad, I.H. Ibrahim, M. Roumie, M. Rekaby, J. Low Temp. Phys. 172(3–4), 234–255 (2013)

    Article  ADS  Google Scholar 

  15. A. Jabbar, I. Qasim, M. Mumtaz, K. Nadeem, Prog. Nat. Sci. Mater. Int. 25(3), 204–208 (2015)

    Article  Google Scholar 

  16. J.L. Maldonado-Mejía, J.D. Quiz-Celestino, M.E. Botello-Zubiate, S.A. Palomares-Sánchez, J.A. Matutes-Aquino. J. Adv. Condens. Matter Phys. 2013, 5 (2013). https://doi.org/10.1155/2013/461652

    Article  Google Scholar 

  17. A. Aftabi, M. Mozaffari, J. Supercond. Nov. Magn. 28(8), 2337–2343 (2015)

    Article  Google Scholar 

  18. A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati, J. Sonier, J. Supercond. Nov. Magn. 27(6), 1369–1379 (2014)

    Article  Google Scholar 

  19. P. Kameli, H. Salamati, I. Abdolhosseini, J. Alloys Compd. 458(1–2), 61–65 (2008)

    Article  Google Scholar 

  20. H. Salamati, P. Kameli, J. Phys. C Supercond. 403(1–2), 60–66 (2004)

    Article  ADS  Google Scholar 

  21. R. Awad, A.I. Abou-Aly, I.H. Ibrahim, M. El-Korek, S. Isber, A. Faraj, J. Alloys Compd. 460(1–2), 500–506 (2008)

    Article  Google Scholar 

  22. X. Liu, H. Liu, J. Xing, Y. Guan, Z. Ma, G. Shan, C. Yang, J. China Particuol. 1(2), 76–79 (2003)

    Article  Google Scholar 

  23. P.G. Radaelli, D.G. Hinks, A.W. Mitchell, B.A. Hunter, J.L. Wagner, B. Dabrowski, K.G. Vandervoort, H.K. Viswanathan, J.D. Jorgensen, J. Phys. Rev. B 49(6), 4163 (1994)

    Article  ADS  Google Scholar 

  24. R. Awad, M. Roumié, S. Isber, S. Marhaba, A.I. AbouAly, H. Basma, J. Supercond. Nov. Magn. 28(2), 535–539 (2015)

    Article  Google Scholar 

  25. R. Awad, N.H. Mohammed, A.A. Aly, S. Isber, H.A. Motaweh, D.E.S. Bakeer, M. Roumié, J. Adv. Ceram. 5(1), 93–101 (2016)

    Article  Google Scholar 

  26. M. Huth, M. Schmitt, H. Adrain, J. Phys. C 178, 203–212 (1991)

    Article  Google Scholar 

  27. S. Celebi, U. Kölemen, A.I. Malik, A. Öztürk, J. Phys. Status Solidi A 194(1), 260–270 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the Materials Science laboratory, Physics Department, Faculty of Science, Beirut Arab University, in cooperation with the Superconductivity and metallic-glass laboratory, Faculty of Science, Alexandria University, Egypt, American University of Beirut (AUB) and Accelerator Laboratory, Lebanese Atomic Energy Commission, CNRS, Beirut, Lebanon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Basma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuHlaiwa, H., Basma, H., Rekaby, M. et al. Influence of Lead Fluoride Substitution on the Physical Properties of (\( {\text{Cu}}_{0.5} {\text{Tl}}_{0.5} \))-1223 Phase. J Low Temp Phys 198, 26–40 (2020). https://doi.org/10.1007/s10909-019-02245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02245-z

Keywords

Navigation