Skip to main content
Log in

Polynomial Forms of Typical Interatomic Potential Functions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The use of polynomial functionals for describing two-body interactions in computational chemistry softwares has been surveyed and found to be prevalent. In this paper, Binomial and Maclaurin series expansions are used for expressing typical interatomic potential functions – such as Lennard-Jones, Morse, Rydberg and Buckingham potential – in a generic polynomial function, with the coefficients presented in a tabular format. Theoretical plots of these potential functions and their corresponding polynomial forms show increasing correlation with the order of polynomial, thereby validating the obtained polynomial’s coefficients. Conversely, a polynomial functional obtained by curve-fitting of experimental data can be converted into Morse, Rydberg and Buckingham potentials by using the generated table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Nieminen M.J. Puska M.J. Manninen (1990) Many-Atom Interactions in Solids Springer Berlin

    Google Scholar 

  2. J.N. Murrell S. Carter S.C. Farantos P. Huxley A.J.C. Varandas (1984) Molecular Potential Energy Functions Wiley New York

    Google Scholar 

  3. S. Erkoc (1997) Phys. Rep. 278 79 Occurrence Handle10.1016/S0370-1573(96)00031-2

    Article  Google Scholar 

  4. A.K. Rappe C.J. Casewit (1997) Molecular Mechanics across Chemistry University Science Books California

    Google Scholar 

  5. F. Jensen (1999) Introduction to Computational Chemistry Wiley West Sussex

    Google Scholar 

  6. D.W. Brenner (2000) Phys. Status Solidi B 217 23 Occurrence Handle10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-N

    Article  Google Scholar 

  7. T.C. Lim (2002) J. Math. Chem. 31 421 Occurrence Handle10.1023/A:1021024806235 Occurrence HandleMR1963241

    Article  MathSciNet  Google Scholar 

  8. T.C. Lim (2002) J. Math. Chem. 32 249 Occurrence Handle10.1023/A:1022174923270 Occurrence HandleMR1963299

    Article  MathSciNet  Google Scholar 

  9. T.C. Lim (2003) J. Math. Chem. 33 29 Occurrence Handle10.1023/A:1023243413549 Occurrence HandleMR2011213

    Article  MathSciNet  Google Scholar 

  10. T.C. Lim (2003) J. Math. Chem. 33 279 Occurrence Handle10.1023/A:1024798909685 Occurrence HandleMR1982539

    Article  MathSciNet  Google Scholar 

  11. T.C. Lim (2003) J. Math. Chem. 34 221 Occurrence Handle10.1023/B:JOMC.0000004071.86802.e9 Occurrence HandleMR2049926

    Article  MathSciNet  Google Scholar 

  12. T.C. Lim (2004) J. Math. Chem. 36 139 Occurrence Handle10.1023/B:JOMC.0000038773.33727.e3 Occurrence HandleMR2086376

    Article  MathSciNet  Google Scholar 

  13. T.C. Lim (2004) Z. Naturforsch. A 59 116

    Google Scholar 

  14. T.C. Lim (2003) Z. Naturforsch. A 58 615

    Google Scholar 

  15. T.C. Lim (2004) Czech. J. Phys. 54 553 Occurrence Handle10.1023/B:CJOP.0000024958.15224.33

    Article  Google Scholar 

  16. T.C. Lim (2004) Czech. J. Phys. 54 947 Occurrence Handle10.1023/B:CJOP.0000042647.51651.2a

    Article  Google Scholar 

  17. T.C. Lim (2004) Chin. Phys. Lett. 21 2167 Occurrence Handle10.1088/0256-307X/21/11/025

    Article  Google Scholar 

  18. T.C. Lim (2005) Chin. J. Phys. 43 43

    Google Scholar 

  19. T.C. Lim (2004) Physica Scripta 70 347

    Google Scholar 

  20. T.C. Lim (2005) MATCH Commun. Math. Comput. Chem. 54 29 Occurrence HandleMR2150703

    MathSciNet  Google Scholar 

  21. T.C. Lim (2003) MATCH Commun. Math. Comput. Chem. 49 155

    Google Scholar 

  22. T.C. Lim (2004) MATCH Commun. Math. Comput. Chem. 50 185 Occurrence HandleMR2037433

    MathSciNet  Google Scholar 

  23. T.C. Lim (2004) J. Math. Chem. 36 147 Occurrence Handle10.1023/B:JOMC.0000038772.74111.05 Occurrence HandleMR2086377

    Article  MathSciNet  Google Scholar 

  24. E.M. Engler J.D. Andose P.v.R. Schleyer (1973) J. Am. Chem. Soc. 95 8005 Occurrence Handle10.1021/ja00805a012

    Article  Google Scholar 

  25. N.L. Allinger (1977) J. Am. Chem. Soc. 99 8127 Occurrence Handle10.1021/ja00467a001

    Article  Google Scholar 

  26. S. Lifson A.T. Hagler P. Dauber (1979) J. Am. Chem. Soc. 101 5111 Occurrence Handle10.1021/ja00512a001

    Article  Google Scholar 

  27. R. Brooks R.E. Bruccoleri B.D. Olafson D.L. States S. Swaminathan M. Karplus (1983) J. Comput. Chem 4 187 Occurrence Handle10.1002/jcc.540040211

    Article  Google Scholar 

  28. W.F. van Gunsteren and H.J.C. Berendsen, GROMOS: Groningen Molecular Simulation Software, Technical Report, Laboratory of Physical Chemistry, University of Groningen (1988).

  29. M. Clark R.D. Cramer SuffixIII N. Opdenbosch Particlevan (1989) J. Comput. Chem. 10 982 Occurrence Handle10.1002/jcc.540100804

    Article  Google Scholar 

  30. N.L. Allinger Y.H. Yuh J.H. Lii (1989) J. Am. Chem. Soc. 111 8551 Occurrence Handle10.1021/ja00205a001

    Article  Google Scholar 

  31. S.L. Mayo B.D. Olafson W.A. Goddard SuffixIII (1990) J. Phys. Chem. 94 8897 Occurrence Handle10.1021/j100389a010

    Article  Google Scholar 

  32. S.D. Morley R.J. Abraham I.S. Haworth D.E. Jackson M.R. Saunders J.G. Vinter (1991) J. Comput.-Aided Mol. Des. 5 475 Occurrence Handle10.1007/BF00125666 Occurrence Handle1770382

    Article  PubMed  Google Scholar 

  33. V.S. Allured C.M. Kelly C.R. Landis (1991) J. Am. Chem. Soc. 113 1 Occurrence Handle10.1021/ja00001a001

    Article  Google Scholar 

  34. A.K. Rappe C.J. Casewit K.S. Colwell W.A. Goddard SuffixIII W.M. Skiff (1992) J. Am. Chem. Soc. 114 10024 Occurrence Handle10.1021/ja00051a040

    Article  Google Scholar 

  35. M.J. Hwang T.P. Stockfisch A.T. Hagler (1994) J. Am. Chem. Soc. 116 2515 Occurrence Handle10.1021/ja00085a036

    Article  Google Scholar 

  36. W.D. Cornell P. Cieplak C.I. Bayly I.R. Gould K.M. Merz SuffixJr G.M. Ferguson D.C. Spellmeyer T. Fox J.W. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179 Occurrence Handle10.1021/ja00124a002

    Article  Google Scholar 

  37. P. Comba T.W. Hambley (1995) Molecular Modeling of Inorganic Compounds EditionNumber1 Weinheim VCH

    Google Scholar 

  38. J.M.L. Dillen (1995) J. Comput. Chem. 16 595 Occurrence Handle10.1002/jcc.540160508

    Article  Google Scholar 

  39. T.A. Halgren (1996) J. Comput. Chem. 17 490 Occurrence Handle10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    Article  Google Scholar 

  40. N.L. Allinger K. Chen J.H. Lii (1996) J. Comput. Chem. 17 642 Occurrence Handle10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U

    Article  Google Scholar 

  41. W. Damm A. Frontera J. Tirado-Rives W.L. Jorgensen (1997) J. Comput. Chem. 18 1955 Occurrence Handle10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L

    Article  Google Scholar 

  42. J.E. Lennard-Jones (1924) Proc. Roy Soc. Lond A 106 463

    Google Scholar 

  43. P.M. Morse (1929) Phys. Rev. 34 57 Occurrence Handle10.1103/PhysRev.34.57

    Article  Google Scholar 

  44. R. Rydberg (1931) Z. Phys. 73 376

    Google Scholar 

  45. R.A. Buckingham (1938) Proc. Roy. Soc. Lond A 168 264

    Google Scholar 

  46. T.C. Lim (2004) J. Math. Chem. 36 261 Occurrence Handle10.1023/B:JOMC.0000044223.40611.00 Occurrence HandleMR2101449

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Polynomial Forms of Typical Interatomic Potential Functions. J Math Chem 38, 495–501 (2005). https://doi.org/10.1007/s10910-004-6903-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-004-6903-x

Keywords

AMS subject classification

Navigation