Skip to main content
Log in

A probabilistic foundation for dynamical systems: theoretical background and mathematical formulation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we describe a probabilistic framework for describing dynamical systems. The approach is inspired by quantum dynamical expectation dynamics. Specifically, an abstract evolution operator corresponding to the Hamiltonian in quantum dynamics is constructed. The evolution of this operator defining PDE’s solution is isomorphic to the functional structure of the wave function as long as its initial form permits. This operator enables us to use one of the most important probabilistic concepts, namely expectations. The expectation dynamics are governed by equations which are constructed via commutator algebra. Based on inspiration from quantum dynamics, we have used both the independent variables and the symmetric forms of their derivatives. For construction of the expectation dynamics, the algebraic independent variable operators which multiply their operands by the corresponding independent variable suffice. In our descriptions, we remain at the conceptual level in a self-consistent manner. The phenomenological implications and the tremendous potential of this approach for scientific discovery and advancement is described in the companion to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katok A., Hasselblatt B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  2. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  3. Isham C.J.: Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, London (1995)

    Google Scholar 

  4. Strocchi F.: An Introduction to the Mathematical Structure of Quantum Mechanincs: A Short Course for Mathematicians. World Scientific, London (2005)

    Google Scholar 

  5. Demiralp M.: Convergence issues in the Gaussian weighted multidimensional fluctuation expansion for the univariate numerical integration. WSEAS Trans. Math. 4, 486–492 (2005)

    Google Scholar 

  6. Demiralp M.: Fluctuationlessness theorem to approximate univariate functions’ matrix representations. WSEAS Trans. Math. 8(6), 258–267 (2009)

    Google Scholar 

  7. Gürvit E., Baykara N.A., Demiralp M.: Numerical integration of bivariate functions over a nonrectangular area by using fluctuation lessness theorem. WSEAS Trans. Math. 8(5), 193–198 (2009)

    Google Scholar 

  8. Altay N., Demiralp M.: Fluctuationlessness theorem and its application to boundary value problems of ODEs. WSEAS Trans. Math. 8(5), 199–204 (2009)

    Google Scholar 

  9. GözükırmızıC., Demiralp M.: The application of the fluctuation expansion with extended basis set to numerical integration. WSEAS Trans. Math. 8(5), 205–212 (2009)

    Google Scholar 

  10. Demiralp M.: No fluctuation approximation in any desired precision for univariate matrix representations. J. Math. Chem. 47(1), 99–110 (2010)

    Article  CAS  Google Scholar 

  11. Altay N., Demiralp M.: Numerical solution of ordinary differential equations by fluctuationlessness theorem. J. Math. Chem. 47(4), 1323–1344 (2010)

    Article  CAS  Google Scholar 

  12. Demiralp M.: Data production for a multivariate function on an orthogonal hyperprismatic grid via fluctuation free matrix representation: completely filled grid case. IJEECE 1(1), 61–76 (2010)

    Google Scholar 

  13. E. Demiralp, M. Demiralp, in AIP Proceedings for the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2010), Symposium 112, Recent Developments in Hilbert Space Tools and Methodology for Scientific Computing. Dynamical Causal Modeling From a Quantum Dynamical Perspective, vol. 1281 (Rhodes, Greece, 2010), pp. 1954–1959, 19–26 September 2010

  14. Demiralp M., Rabitz H.: Lie algebraic factorization of multivariable evolution operators: definition and the solution of the canonical problem. Int. J. Eng. Sci. 31, 307–331 (1993)

    Article  Google Scholar 

  15. Demiralp M., Rabitz H.: Lie algebraic factorization of multivariable evolution operators: convergence theorems for the canonical case. Int. J. Eng. Sci. 37, 333–346 (1993)

    Article  Google Scholar 

  16. E. Demiralp, M. Demiralp, in Proceedings for the 1st IEEEAM Conference on Applied Computer Science (ACS). Reductive Multilinear Array Decomposition Based Support Functions in Enhanced Multivariance Product Representation (EMPR) (Malta, 2010), pp. 448–454, 15–17 September 2010

  17. M. Demiralp, E. Demiralp, in AIP Proceedings for the International Conference of Computational Methods in Science and Engineering (ICCMSE 2009), Mini Symposium on Recent Developments in Numerical Schemes for Hilbert Space Related Issues in Science and Engineering, Chaired by Metin Demiralp. Dimensionality Reduction And Approximation Via Space Extension And Multilinear Array Decomposition (Rhodes, Greece, 2009), 29 September–4 October 2009 (in print)

  18. M. Demiralp, E. Demiralp, in AIP Proceedings for the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2009), vol. 1168. An Orthonormal Decomposition Method For Multidimensional Matrices (Rethymno, Crete, Greece, 2009), pp. 428–431, 18–22 September 2009

  19. Demiralp E.: Applications of high dimensional model representations to computer vision. WSEAS Trans. Math. 8(4), 184–192 (2009)

    Google Scholar 

  20. E. Demiralp, in Proceedings for the WSEAS International Conference on Simulation, Modelling and Optimization (SMO’09). Applications of Flexibly Initialized High Dimensional Model Representation in Computer Vision (Budapest, Hungary, 2009), pp. 310–315, 3–5 September 2009

  21. E. Demiralp, in Proceedings of the 11th WSEAS international conference on Mathematical methods and computational techniques in electrical engineering (MMACTEE’09). Application of Reductive Decomposition Method for Multi linear Arrays (RDMMA) to Animations (2009), pp. 648–656

  22. E. Demiralp, in AIP Proceedings for the International Conference of Computational Methods in Science and Engineering (ICCMSE 2010). Linear Dynamic Systems From Virtual Quantum Harmonic Oscillator Point of View (Psalidi, Kos, Greece, 2010) (in print), 3–8 October 2010

  23. Marcus M.: Finite Dimensional Multilinear Algebra. Dekker, New York (1975)

    Google Scholar 

  24. Kruskal J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions with applications to arithmetic complexity and statistics. Linear Algebr. Appl. 18, 95–138 (1977)

    Article  Google Scholar 

  25. Kruskal J.B.: Rank, Decomposition, and Uniqueness for 3-way and N-way Arrays. In: Coppi, R., Bolasco, S. (eds) Multiway Data Analysis, pp. 7–18. North-Holland, Amsterdam (1989)

    Google Scholar 

  26. Leurgans S.E., Ross R.T., Abel R.B.: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14, 1064–1083 (1993)

    Article  Google Scholar 

  27. De Lathauwer L., De Moor B., Vandewalle J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  Google Scholar 

  28. Zhang T., Golub G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  Google Scholar 

  29. Kolda T.G., Bader B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2008)

    Article  Google Scholar 

  30. Andersen A.H., Rayens W.S.: Structure-seeking multilinear methods for the analysis of fMRI data. NeuroImage 22, 728–739 (2004)

    Article  Google Scholar 

  31. Andersen C.M., Bro R.: Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 17, 200–215 (2003)

    Article  CAS  Google Scholar 

  32. Beckmann C., Smith S.: Tensorial extensions of independent component analysis for multisubject FMRI analysis. NeuroImage 25, 294–311 (2005)

    Article  CAS  Google Scholar 

  33. Beckmann C., Smith S.: Review on multiway analysis in chemistry 2000–2005. Crit. Rev. Anal. Chem. 36, 279–293 (2006)

    Article  Google Scholar 

  34. Comon P.: Independent component analysis, a new concept?. Signal Process. 36, 287–314 (1994)

    Article  Google Scholar 

  35. Comon P.: Tensor Decompositions: State of the Art and Applications. In: McWhirter, J.G., Proudler, I.K. (eds) Mathematics in Signal Processing V, Oxford University Press, Oxford (2001)

    Google Scholar 

  36. Coppi, R., Bolasco, S. (eds): Multiway Data Analysis. North-Holland, Amsterdam (1989)

    Google Scholar 

  37. De Lathauwer L., De Moor B., Vandewalle J.: Independent component analysis and (simultaneous) third-order tensor diagonalization. IEEE Trans. Signal Process. 49, 2262–2271 (2001)

    Article  Google Scholar 

  38. Kolda T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23, 243–255 (2001)

    Article  Google Scholar 

  39. Kolda T.G.: A counterexample to the possibility of an extension of the Eckart-Young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix Anal. Appl. 24, 762–767 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Demiralp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiralp, M., Demiralp, E. & Hernandez-Garcia, L. A probabilistic foundation for dynamical systems: theoretical background and mathematical formulation. J Math Chem 50, 850–869 (2012). https://doi.org/10.1007/s10910-011-9929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9929-x

Keywords

Navigation