Skip to main content

Advertisement

Log in

When Tumor Suppressor TGFβ Meets the HER2 (ERBB2) Oncogene

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Despite its tumor suppressive role in normal mammary epithelial cells, TGFβ has been reported to promote the migration, invasion and survival in breast cancer cells overexpressing the HER2 (ERBB2; neu) oncogene, and to accelerate the metastasis of neu-induced mammary tumors in mice. A clearer understanding of the molecular mechanisms underlying the crosstalk between TGFβ and HER2 has started to emerge. In recent studies reviewed here, the synergistic effect of TGFβ and HER2 on tumor progression has been shown to likely be a combined result of two distinct features: (1) loss of TGFβ’s tumor suppressive effect through functional alterations in the anti-mitogenic effect of Smad-mediated transcription, and (2) gain of pro-survival and pro-migratory function through HER2-dependent mechanisms. In HER2-overexpressing breast cancer, this crosstalk results in increased cancer cell proliferation, survival and invasion, accelerated metastasis in animal models, and resistance to chemotherapy and HER2-targeted therapy. Thus, the transformed cellular context imparted by constitutively active HER2 signaling, as a consequence of HER2 gene amplification or overexpression, aborts the tumor suppressive role of TGFβ and facilitated the oncogenic role of this pathway. In turn, TGFβ potentiates oncogenic HER2 signaling by inducing shedding of the ERBB ligands and clustering of HER2 with integrins. Here we discuss recent studies examining Smad-dependent and -independent mechanisms of crosstalk between TGFβ and HER2. Therefore, blockade of TGFβ:HER2 crosstalk may suppress breast cancer progression and metastasis, and enhance the efficiency of conventional therapies in patients with HER2-overexpressing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

ERBB:

Erythroblastic leukemia viral oncogene homolog

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

HER2:

Human epidermal growth factor receptor 2

JNK:

C-Jun NH2-terminal kinase

MAPK:

Mitogen-activated protein kinase

MMR:

DNA mismatch repair

MSH2:

mutS homolog 2

PI3K:

Phosphatidylinositol-3 kinase

RTK:

Receptor tyrosine kinase

SBE:

Smad binding element

TGFβ:

Transforming growth factor β

VEGF:

Vascular endothelial growth factor

References

  1. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295–309.

    Article  PubMed  CAS  Google Scholar 

  2. Ewan KB, Shyamala G, Ravani SA, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.

    Article  PubMed  CAS  Google Scholar 

  3. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84.

    Article  PubMed  CAS  Google Scholar 

  4. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117–29.

    Article  PubMed  CAS  Google Scholar 

  5. Dumont N, Arteaga CL. Targeting the TGF beta signaling network in human neoplasia. Cancer Cell. 2003;3(6):531–6.

    Article  PubMed  CAS  Google Scholar 

  6. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  PubMed  CAS  Google Scholar 

  7. Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Oncologist. 1998;3(4):237–52.

    PubMed  Google Scholar 

  8. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  PubMed  CAS  Google Scholar 

  9. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. Embo J. 1996;15(10):2452–67.

    PubMed  CAS  Google Scholar 

  10. Graus-Porta D, Beerli RR, Daly JM, et al. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. Embo J. 1997;16(7):1647–55.

    Article  PubMed  CAS  Google Scholar 

  11. Wang LM, Kuo A, Alimandi M, et al. ErbB2 expression increases the spectrum and potency of ligand-mediated signal transduction through ErbB4. Proc Natl Acad Sci USA. 1998;95(12):6809–14.

    Article  PubMed  CAS  Google Scholar 

  12. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem. 1999;274(13):8865–74.

    Article  PubMed  CAS  Google Scholar 

  13. Thor AD, Liu S, Edgerton S, et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J Clin Oncol. 2000;18(18):3230–9.

    PubMed  CAS  Google Scholar 

  14. Alimandi M, Romano A, Curia MC, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995;10(9):1813–21.

    PubMed  CAS  Google Scholar 

  15. Pierce JH, Arnstein P, DiMarco E, et al. Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene. 1991;6(7):1189–94.

    PubMed  CAS  Google Scholar 

  16. Muthuswamy SK, Li D, Lelievre S, et al. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001;3(9):785–92.

    Article  PubMed  CAS  Google Scholar 

  17. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA. 1992;89(10):4285–9.

    Article  PubMed  CAS  Google Scholar 

  18. Roskoski Jr R. The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun. 2004;319(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  19. Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol. 1999;26(4 Suppl 12):78–83.

    PubMed  CAS  Google Scholar 

  20. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17(9):2639–48.

    PubMed  CAS  Google Scholar 

  21. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    Article  PubMed  CAS  Google Scholar 

  22. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7.

    Article  PubMed  CAS  Google Scholar 

  23. Motoyama AB, Hynes NE, Lane HA. The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res. 2002;62(11):3151–8.

    PubMed  CAS  Google Scholar 

  24. Yakes FM, Chinratanalab W, Ritter CA, et al. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62(14):4132–41.

    PubMed  CAS  Google Scholar 

  25. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27.

    Article  PubMed  CAS  Google Scholar 

  26. Garrett JT, Arteaga CL. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: Mechanisms and clinical implications. Cancer Biol Ther 2011;11(9).

  27. Muraoka-Cook RS, Shin I, Yi JY, et al. Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 2006;25(24):3408–23.

    Article  PubMed  CAS  Google Scholar 

  28. Siegel PM, Shu W, Cardiff RD, et al. Transforming growth factor beta signaling impairs neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA. 2003;100(14):8430–5.

    Article  PubMed  CAS  Google Scholar 

  29. Muraoka RS, Koh Y, Roebuck LR, et al. Increased malignancy of neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol. 2003;23(23):8691–703.

    Article  PubMed  CAS  Google Scholar 

  30. Muraoka-Cook RS, Dumont N, Arteaga CL. Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res. 2005;11(2 Pt 2):937s–43.

    PubMed  CAS  Google Scholar 

  31. Bandyopadhyay A, Lopez-Casillas F, Malik SN, et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res. 2002;62(16):4690–5.

    PubMed  CAS  Google Scholar 

  32. Seton-Rogers SE, Lu Y, Hines LM, et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA. 2004;101(5):1257–62.

    Article  PubMed  CAS  Google Scholar 

  33. Ueda Y, Wang S, Dumont N, et al. Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem. 2004;279(23):24505–13.

    Article  PubMed  CAS  Google Scholar 

  34. Xie W, Mertens JC, Reiss DJ, et al. Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res. 2002;62(2):497–505.

    PubMed  CAS  Google Scholar 

  35. Wang SE, Narasanna A, Whitell CW, et al. Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. J Biol Chem. 2007;282(8):5661–9.

    Article  PubMed  CAS  Google Scholar 

  36. Cordenonsi M, Dupont S, Maretto S, et al. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell. 2003;113(3):301–14.

    Article  PubMed  CAS  Google Scholar 

  37. Yu Y, Wang Y, Ren X, et al. Context-dependent bidirectional regulation of the mutS homolog 2 by transforming growth factor beta contributes to chemoresistance in breast cancer cells. Mol Cancer Res. 2010;8(12):1633–42.

    Article  PubMed  CAS  Google Scholar 

  38. Zheng L, Ren JQ, Li H, et al. Downregulation of wild-type p53 protein by HER-2/neu mediated PI3K pathway activation in human breast cancer cells: its effect on cell proliferation and implication for therapy. Cell Res. 2004;14(6):497–506.

    Article  PubMed  CAS  Google Scholar 

  39. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303(5659):844–8.

    Article  PubMed  CAS  Google Scholar 

  40. Arnal-Estape A, Tarragona M, Morales M, et al. HER2 silences tumor suppression in breast cancer cells by switching expression of C/EBPss isoforms. Cancer Res. 2010;70(23):9927–36.

    Article  PubMed  CAS  Google Scholar 

  41. Gomis RR, Alarcon C, Nadal C, et al. C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell. 2006;10(3):203–14.

    Article  PubMed  CAS  Google Scholar 

  42. Dowdy SC, Mariani A, Janknecht R. HER2/neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem. 2003;278(45):44377–84.

    Article  PubMed  CAS  Google Scholar 

  43. Wang SE, Shin I, Wu FY, et al. HER2/neu (ErbB2) Signaling to Rac1-Pak1 Is Temporally and Spatially Modulated by Transforming Growth Factor {beta}. Cancer Res. 2006;66(19):9591–600.

    Article  PubMed  CAS  Google Scholar 

  44. Wang SE, Xiang B, Zent R, et al. Transforming growth factor beta induces clustering of HER2 and integrins by activating Src-focal adhesion kinase and receptor association to the cytoskeleton. Cancer Res. 2009;69(2):475–82.

    Article  PubMed  CAS  Google Scholar 

  45. Wang SE, Xiang B, Guix M, et al. Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol. 2008;28(18):5605–20.

    Article  PubMed  CAS  Google Scholar 

  46. Northey JJ, Chmielecki J, Ngan E, et al. Signaling through ShcA is required for transforming growth factor beta- and neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol. 2008;28(10):3162–76.

    Article  PubMed  CAS  Google Scholar 

  47. Wang SE, Yu Y, Criswell TL, et al. Oncogenic mutations regulate tumor microenvironment through induction of growth factors and angiogenic mediators. Oncogene. 2010;29(23):3335–48.

    Article  PubMed  CAS  Google Scholar 

  48. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  49. Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A. 2005;102(10):3738–43.

    Article  PubMed  CAS  Google Scholar 

  50. Harris LN, You F, Schnitt SJ, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res. 2007;13(4):1198–207.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This review article was supported by NCI K99/R00 CA125892 (SEW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhen Emily Wang.

Additional information

Financial Support: NCI K99/R00 CA125892 (SEW)

Figure 2: Copyright © American Society for Microbiology [Molecular and Cellular Biology, 2008, Vol. 28: 5605–20, doi:10.1128/MCB.00787-08]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, A., Arteaga, C.L. & Wang, S.E. When Tumor Suppressor TGFβ Meets the HER2 (ERBB2) Oncogene. J Mammary Gland Biol Neoplasia 16, 81–88 (2011). https://doi.org/10.1007/s10911-011-9206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-011-9206-4

Keywords

Navigation