Skip to main content

Advertisement

Log in

Role of Prolactin in Promotion of Immune Cell Migration into the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Immune cells in the mammary gland play a number of important roles, including protection against infection during lactation and, after passing into milk, modulation of offspring immunity. However, little is known about the mechanism of recruitment of immune cells to the lactating gland in the absence of infection. Given the importance of prolactin to other aspects of lactation, we hypothesized it would also play a role in immune cell recruitment. Prolactin treatment of adult female mice for a period equivalent to pregnancy and the first week of lactation increased immune cell flux through the mammary gland, as reflected in the number of immune cells in mammary gland-draining, but not other lymph nodes. Conditioned medium from luminal mammary epithelial HC11 cell cultures was chemo-attractive to CD4+ and CD8+ T cells, CD4+ and CD8+ memory T cells, B cells, macrophages, monocytes, eosinophils, and neutrophils. Prolactin did not act as a direct chemo-attractant, but through effects on luminal mammary epithelial cells, increased the chemo-attractant properties of conditioned medium. Macrophages and neutrophils constitute the largest proportion of cells in milk from healthy glands. Depletion of CCL2 and CXCL1 from conditioned medium reduced chemo-attraction of monocytes and neutrophils, and prolactin increased expression of these two chemokines in mammary epithelial cells. We conclude that prolactin is an important player in the recruitment of immune cells to the mammary gland both through its activities to increase epithelial cell number as well as production of chemo-attractants on a per cell basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z. Hormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74(7):365–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol. 2011;3(3). pii:a003285. doi:10.1101/cshperspect.a003285.

  3. Plaks V, Boldajipour B, Linnemann JR, Nguyen NH, Kersten K, Wolf Y, et al. Adaptive immune regulation of mammary postnatal organogenesis. Dev Cell. 2015;34(5):493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

    CAS  PubMed  Google Scholar 

  5. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155–64.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lilla JN, Werb Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol. 2010;337(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  7. Rieanrakwong D, Laoharatchatathanin T, Terashima R, Yonezawa T, Kurusu S, Hasegawa Y, et al. Prolactin suppression of gonadotropin-releasing hormone initiation of mammary gland involution in female rats. Endocrinology. 2016;157(7):2750–8.

    Article  CAS  PubMed  Google Scholar 

  8. Van Leeuwenhoek A. Arcana Naturae Detecta Delphis Batavorum. Apud Henricum a Krooneveld 1685; Epistola 106.

  9. Simon C, Balzer K, Welsch U, Strutte HJ. Cytology of human milk. Schweiz Med Wochenschr. 1970;100(38):1603–10.

    CAS  PubMed  Google Scholar 

  10. Breborowicz D, Szlapka Z, Breborowicz H. Morphological features of colostrum and human milk cells. Pol Tyg Lek. 1971;26(6):201–3.

    CAS  PubMed  Google Scholar 

  11. Crago SS, Prince SJ, Pretlow TG, McGhee JR, Mestecky J. Human colostral cells. I. Separation and characterization. Clin Exp Immunol. 1979;38(3):585–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wirt DP, Adkins LT, Palkowetz KH, Schmalstieg FC, Goldman AS. Activated and memory T lymphocytes in human milk. Cytometry. 1992;13(3):282–90.

    Article  CAS  PubMed  Google Scholar 

  13. Robinson JE, Harvey BA, Soothill JF. Phagocytosis and killing of bacteria and yeast by human milk cells after opsonisation in aqueous phase of milk. Br Med J. 1978;1(6125):1443–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cummings NP, Neifert MR, Pabst MJ, Johnston Jr RB. Oxidative metabolic response and microbicidal activity of human milk macrophages: effect of lipopolysaccharide and muramyl dipeptide. Infect Immun. 1985;49(2):435–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Speer CP, Schatz R, Gahr M. Function of breast milk macrophages. Monatsschr Kinderheilkd. 1985;133(11):913–7.

    CAS  PubMed  Google Scholar 

  16. Speer CP, Gahr M, Pabst MJ. Phagocytosis-associated oxidative metabolism in human milk macrophages. Acta Paediatr Scand. 1986;75(3):444–51.

    Article  CAS  PubMed  Google Scholar 

  17. Pittard 3rd WB, Polmar SH, Fanaroff AA. The breastmilk macrophage: a potential vehicle for immunoglobulin transport. J Reticuloendothel Soc. 1977;22(6):597–603.

    PubMed  Google Scholar 

  18. Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci. 1985;39(1):10–5.

    CAS  PubMed  Google Scholar 

  19. Seelig Jr LL, Head JR. Uptake of lymphocytes fed to suckling rats. An autoradiographic study of the transit of labeled cells through the neonatal gastric mucosa. J Reprod Immunol. 1987;10(4):285–97.

    Article  PubMed  Google Scholar 

  20. Tuboly S, Bernath S, Glavits R, Kovacs A, Megyeri Z. Intestinal absorption of colostral lymphocytes in newborn lambs and their role in the development of immune status. Acta Vet Hung. 1995;43(1):105–15.

    CAS  PubMed  Google Scholar 

  21. Tuboly S, Bernath S, Glavits R, Medveczky I. Intestinal absorption of colostral lymphoid cells in newborn piglets. Vet Immunol Immunopathol. 1988;20(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  22. Jain L, Vidyasagar D, Xanthou M, Ghai V, Shimada S, Blend M. In vivo distribution of human milk leucocytes after ingestion by newborn baboons. Arch Dis Child. 1989;64 :930–3.7 Spec No

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou L, Yoshimura Y, Huang Y, Suzuki R, Yokoyama M, Okabe M, et al. Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology. 2000;101(4):570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arvola M, Gustafsson E, Svensson L, Jansson L, Holmdahl R, Heyman B, et al. Immunoglobulin-secreting cells of maternal origin can be detected in B cell-deficient mice. Biol Reprod. 2000;63(6):1817–24.

    Article  CAS  PubMed  Google Scholar 

  25. Ma LJ, Guzmán EA, DeGuzman A, Muller HK, Walker AM, Owen LB. Local cytokine levels associated with delayed-type hypersensitivity responses: modulation by gender, ovariectomy, and estrogen replacement. Endocrinology. 2007;193:291–97.

  26. Ghosh MK, Nguyen V, Muller HK, Walker AM. Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus. J Immunol. 2016;197(6):2290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sabbaj S, Ghosh MK, Edwards BH, Leeth R, Decker WD, Goepfert PA, et al. Breast milk-derived antigen-specific CD8+ T cells: an extralymphoid effector memory cell population in humans. J Immunol. 2005;174(5):2951–6.

    Article  CAS  PubMed  Google Scholar 

  28. Weisz-Carrington P, Roux ME, McWilliams M, Phillips-Quagliata JM, Lamm ME. Hormonal induction of the secretory immune system in the mammary gland. Proc Natl Acad Sci U S A. 1978;75(6):2928–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanneau GM, Hibrand-Saint Oyant L, Chevaleyre CC, Salmon HP. Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem. 1999;47(12):1581–92.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem. 2000;275(29):22313–23.

    Article  CAS  PubMed  Google Scholar 

  31. Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y, et al. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J Immunol. 2008;181(9):6309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig) a plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med. 2004;200(6):805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Low EN, Zagieboyloa L, Martinoa B, Wilson E. IgA ASC accumulation to the lactating mammary gland is dependent on VCAM-1 and alpha4 integrins. Mol Immunol. 2010;47(7–8):1608–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7:49–66.

    Article  PubMed  Google Scholar 

  35. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(1):13–28.

    Article  PubMed  Google Scholar 

  36. Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol. 1999;210(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR. Focus on prolactin as a metabolic hormone. Trends Endocrinol Metab. 2006;17(3):110–6.

    Article  CAS  PubMed  Google Scholar 

  38. Wongdee K, Charoenphandhu N. Regulation of epithelial calcium transport by prolactin: from fish to mammals. Gen Comp Endocrinol. 2013;181:235–40.

    Article  CAS  PubMed  Google Scholar 

  39. Mackern-Oberti JP, Valdez SR, Vargas-Roig LM, Jahn GA. Impaired mammary gland T cell population during early lactation in hypoprolactinemic lactation-deficient rats. Reproduction. 2013;146(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  40. Chen TJ, Kuo CB, Tsai KF, Liu JW, Chen DY, Walker AM. Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology. 1998;139(2):609–16.

    CAS  PubMed  Google Scholar 

  41. Xu X, Kreye E, Kuo CB, Walker AM. A molecular mimic of phosphorylated prolactin markedly reduced tumor incidence and size when DU145 human prostate cancer cells were grown in nude mice. Cancer Res. 2001;61(16):6098–104.

    CAS  PubMed  Google Scholar 

  42. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009; Appendix 4: Appendix 4I.

  43. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  44. Gunnet JW, Freeman ME. The mating-induced release of prolactin: a unique neuroendocrine response. Endocr Rev. 1983;4(1):44–61.

    Article  CAS  PubMed  Google Scholar 

  45. Simon SI, Kim MH. A day (or 5) in a neutrophil's life. Blood. 2010;116(4):511–2.

    Article  CAS  PubMed  Google Scholar 

  46. Merlo GR, Graus-Porta D, Cella N, Marte BM, Taverna D, Hynes NE. Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur J Cell Biol. 1996;70(2):97–105.

    CAS  PubMed  Google Scholar 

  47. Keeney SE, Schmalstieg FC, Palkowetz KH, Rudloff HE, Le BM, Goldman AS. Activated neutrophils and neutrophil activators in human milk: increased expression of CD11b and decreased expression of L-selectin. J Leukoc Biol. 1993;54(2):97–104.

    CAS  PubMed  Google Scholar 

  48. Goldman AS, Chheda S, Garofalo R. Evolution of immunologic functions of the mammary gland and the postnatal development of immunity. Pediatr Res. 1998;43(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  49. Pellegrini I, Lebrun JJ, Ali S, Kelly PA. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol. 1992;6(7):1023–31.

    CAS  PubMed  Google Scholar 

  50. Gala RR, Shevach EM. Identification by analytical flow cytometry of prolactin receptors on immunocompetent cell populations in the mouse. Endocrinology. 1993;133(4):1617–23.

    CAS  PubMed  Google Scholar 

  51. Dogusan Z, Hooghe R, Verdood P, Hooghe-Peters EL. Cytokine-like effects of prolactin in human mononuclear and polymorphonuclear leukocytes. J Neuroimmunol. 2001;120(1–2):58–66.

    Article  CAS  PubMed  Google Scholar 

  52. Parkening TA, Collins TJ, Smith ER. Plasma and pituitary concentrations of LH, FSH and prolactin in aged female C57BL/6 mice. J Reprod Fertil. 1980;58(2):377–86.

    Article  CAS  PubMed  Google Scholar 

  53. Kverka M, Burianova J, Lodinova-Zadnikova R, Kocourkova I, Cinova J, Tuckova L, et al. Cytokine profiling in human colostrum and milk by protein array. Clin Chem. 2007;53(5):955–62.

    Article  CAS  PubMed  Google Scholar 

  54. Jakubowski M, Terkel J. Female reproductive function and sexually dimorphic prolactin secretion in rats with lesions in the medial preoptic-anterior hypothalamic continuum. Neuroendocrinology. 1986;43(6):696–705.

    Article  CAS  PubMed  Google Scholar 

  55. Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol. 2016;12(2):77–89.

    CAS  PubMed  Google Scholar 

  56. Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, et al. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology. 2014;155(6):2301–13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shull JD, Gorski J. The hormonal regulation of prolactin gene expression: an examination of mechanisms controlling prolactin synthesis and the possible relationship of estrogen to these mechanisms. Vitam Horm. 1986;43:197–249.

    Article  CAS  PubMed  Google Scholar 

  58. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 1942001:1361–74.

  59. Smits E, Burvenich C, Guidry AJ, Massart-Leen A. Adhesion receptor CD11b/CD18 contributes to neutrophil diapedesis across the bovine blood-milk barrier. Vet Immunol Immunopathol. 2000;73(3–4):255–65.

    Article  CAS  PubMed  Google Scholar 

  60. Michie CA, Tantscher E, Schall T, Rot A. Physiological secretion of chemokines in human breast milk. Eur Cytokine Netw. 1998;9(2):123–9.

    CAS  PubMed  Google Scholar 

  61. Dooley J, Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol. 2012;42(5):1073–9.

    Article  CAS  PubMed  Google Scholar 

  62. Horseman ND, Gregerson KA. Prolactin actions. J Mol Endocrinol. 2014;52(1):R95–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Institute of Child Health and Human Development # RO1-065099 and the California Breast Cancer Research Program # 171B-0053 to AMW. RD was also partially supported by Dorothy Pease and Burden fellowships. The authors thank Dr. Emma Wilson for access to the flow cytometer and Mary Y. Lorenson for provision of the prolactin and editorial assistance (both in the Division of Biomedical Sciences, University of California, Riverside).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riva Dill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dill, R., Walker, A.M. Role of Prolactin in Promotion of Immune Cell Migration into the Mammary Gland. J Mammary Gland Biol Neoplasia 22, 13–26 (2017). https://doi.org/10.1007/s10911-016-9369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-016-9369-0

Keywords

Navigation