Skip to main content
Log in

A New Poisson Noise Filter Based on Weights Optimization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new image denoising algorithm when the data is contaminated by a Poisson noise. As in the Non-Local Means filter, the proposed algorithm is based on a weighted linear combination of the observed image. But in contrast to the latter where the weights are defined by a Gaussian kernel, we propose to choose them in an optimal way. First some “oracle” weights are defined by minimizing a very tight upper bound of the Mean Square Error. For a practical application the weights are estimated from the observed image. We prove that the proposed filter converges at the usual optimal rate to the true image. Simulation results are presented to compare the performance of the presented filter with conventional filtering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(R = poissrnd(\lambda )\) generates random numbers from the Poisson distribution with mean parameter \(\lambda \).

  2. http://www.pami.sjtu.edu.cn/people/jinqy/.

References

  1. Abraham, I., Abraham, R., Desolneux, A., Li-Thiao-Te, S.: Significant edges in the case of non-stationary gaussian noise. Pattern Recognit. 40(11), 3277–3291 (2007)

    Article  MATH  Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A.: \(rmk\)-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  3. Anscombe, F.J.: The transformation of poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bardsley, J.M., Luttman, A.: Total variation-penalized poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31(1), 35–59 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  6. Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the cramer condition. Sib. Math. J. 41(5), 811–848 (2000)

    Article  MathSciNet  Google Scholar 

  7. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buades, T., Lou, Y., Morel, J.M., Tang, Z.: A note on multi-image denoising. In: International Workshop on Local and Non-Local Approximation in Image Processing, pp. 1–15 (2009)

  9. Deledalle, C.-A., Tupin, F., Denis, L.: Poisson nl means: Unsupervised non local means for poisson noise. In: Image Processing (ICIP), 2010 17th IEEE International Conference on, pp. 801–804. IEEE (2010)

  10. Fan, J.: Local linear regression smoothers and their minimax efficiencies. Ann. Stat. 21(1), 196–216 (1993)

    Google Scholar 

  11. Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Monographs on Statistics and Applied Probability, vol. 66. Chapman and Hall (1996)

  12. Fryzlewicz, P., Delouille, V., Nason, G.P.: Goes-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform. J. R. Stat. Soc. Ser. C 56(1), 99–116 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fryzlewicz, P., Nason, G.P.: A Haar-Fisz algorithm for poisson intensity estimation. J. Comput. Graph. Stat. 13(3), 621–638 (2004)

    Article  MathSciNet  Google Scholar 

  14. Hammond, D.K., Simoncelli, E.P.: Image modeling and denoising with orientation-adapted gaussian scale mixtures. IEEE Trans. Image Process. 17(11), 2089–2101 (2008)

    Article  MathSciNet  Google Scholar 

  15. Hirakawa, K., Parks, T.W.: Image denoising using total least squares. IEEE Trans. Image Process. 15(9), 2730–2742 (2006)

    Article  Google Scholar 

  16. Jansen, M.: Multiscale poisson data smoothing. J. R. Stat. Soc. B 68(1), 27–48 (2006)

    Article  MATH  Google Scholar 

  17. Jin, Q., Grama, I., Liu, Q.: Removing gaussian noise by optimization of weights in non-local means. arXiv, preprint arXiv:1109.5640 (2011)

  18. Jin, Q., Grama, I., Liu, Q.: A non-local means filter for removing the poisson noise. Preprint (2012)

  19. Jin, Q., Grama, I., Liu, Q.: Removing poisson noise by optimization of weights in non-local means. In: Photonics and Optoelectronics (SOPO), 2012 Symposium on, pp. 1–4. IEEE (2012)

  20. Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010)

    Article  MathSciNet  Google Scholar 

  21. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006)

    Article  Google Scholar 

  22. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009)

    Article  MathSciNet  Google Scholar 

  24. Luisier, F., Vonesch, C., Blu, T., Unser, M.: Fast interscale wavelet denoising of poisson-corrupted images. Signal Process. 90(2), 415–427 (2010)

    Article  MATH  Google Scholar 

  25. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Makitalo, M., Foi, A.: On the inversion of the anscombe transformation in low-count poisson image denoising. In: Proceedings International Workshop on Local and Non-Local Approx. in Image Process., LNLA 2009, Tuusula, Finland, pp. 26–32. IEEE (2009)

  27. Makitalo, M., Foi, A.: Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2011)

    Article  MathSciNet  Google Scholar 

  28. Mandel, J.: Use of the singular value decomposition in regression analysis. Am. Stat. 36(1), 15–24 (1982)

    Google Scholar 

  29. Merlevède, F., Peligrad, M., Rio, E.: A Bernstein type inequality and moderate deviations for weakly dependent sequences. Probab. Theory Relat. Fields 151(3–4), 435–474 (2011)

    Article  MATH  Google Scholar 

  30. Nowak, R., Kolaczyk, E.D.: A multiscale map estimation method for poisson inverse problems. In: 32nd Asilomar Conference Signals, Systems, and Computers, vol. 2, pp. 1682–1686. IEEE (1998)

  31. Nowak, R.D., Kolaczyk, E.D.: A statistical multiscale framework for poisson inverse problems. IEEE Trans. Inf. Theory 46(5), 1811–1825 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Polzehl, J., Spokoiny, V.: Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. 135(3), 335–362 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  34. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

    Google Scholar 

  35. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)

    Article  MathSciNet  Google Scholar 

  36. Sacks, J., Ylvisaker, D.: Linear estimation for approximately linear models. Ann. Stat. 6(5), 1122–1137 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  37. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Represent. 21(3), 193–199 (2010)

    Article  MathSciNet  Google Scholar 

  38. Terrell, G.R., Scott, D. W.: Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)

    Google Scholar 

  39. Whittle, P.: Optimization Under Constraints: Theory and Applications of Nonlinear Programming. Wiley, New York (1971)

    MATH  Google Scholar 

  40. Zhang, B., Fadili, J.M., Starck, J.L.: Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process. 17(7), 1093–1108 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their helpful comments and remarks. The work has been partially supported by the National Natural Science Foundation of China (Grant Nos. 11101039 and 11171044), Jiangsu Engineering Center of Network Monitoring of Nanjing University of Information Science & Technology (Grant KJR1109), and Hunan Provincial Natural Science Foundation of China (Grant No. 11JJ2001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quansheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Q., Grama, I. & Liu, Q. A New Poisson Noise Filter Based on Weights Optimization. J Sci Comput 58, 548–573 (2014). https://doi.org/10.1007/s10915-013-9743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9743-7

Keywords

Navigation