Skip to main content
Log in

High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Multiderivative time integrators have a long history of development for ordinary differential equations, and yet to date, only a small subset of these methods have been explored as a tool for solving partial differential equations (PDEs). This large class of time integrators include all popular (multistage) Runge–Kutta as well as single-step (multiderivative) Taylor methods. (The latter are commonly referred to as Lax–Wendroff methods when applied to PDEs). In this work, we offer explicit multistage multiderivative time integrators for hyperbolic conservation laws. Like Lax–Wendroff methods, multiderivative integrators permit the evaluation of higher derivatives of the unknown in order to decrease the memory footprint and communication overhead. Like traditional Runge–Kutta methods, multiderivative integrators admit the addition of extra stages, which introduce extra degrees of freedom that can be used to increase the order of accuracy or modify the region of absolute stability. We describe a general framework for how these methods can be applied to two separate spatial discretizations: the discontinuous Galerkin (DG) method and the finite difference essentially non-oscillatory (FD-WENO) method. The two proposed implementations are substantially different: for DG we leverage techniques that are closely related to generalized Riemann solvers; for FD-WENO we construct higher spatial derivatives with central differences. Among multiderivative time integrators, we argue that multistage two-derivative methods have the greatest potential for multidimensional applications, because they only require the flux function and its Jacobian, which is readily available. Numerical results indicate that multiderivative methods are indeed competitive with popular strong stability preserving time integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. When applied to partial differential equations, Taylor methods are commonly referred to as Lax–Wendroff methods.

  2. A finite difference method is conservative if the method satisfies \(\frac{d}{dt}\left( \sum _i q_i(t) \right) = 0\) on a periodic (or infinite) domain.

References

  1. Bettis, D.G., Horn, M.K.: An optimal \((m+3)[m+4]\) Runge Kutta algorithm. In: Proceedings of the Fifth Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach, 1975), Part I, vol. 14, pp. 133–140 (1976)

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Trans. AIME 146(1), 107–116 (1942)

    Google Scholar 

  4. Butcher, J.C.: General linear methods: a survey. Appl. Numer. Math. 1(4), 273–284 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J.C.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996). Selected topics in numerical methods (Miskolc, 1994)

    Google Scholar 

  6. Butcher, J.C.: General linear methods. Acta Numer. 15, 157–256 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algorithms 53(2–3), 171–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2002)

    Article  MathSciNet  Google Scholar 

  10. Daru, V., Tenaud, C.: High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations. J. Comput. Phys. 193(2), 563–594 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dumbser, M., Munz, C.D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fehlberg, E.: Neue genauere Runge-Kutta-Formeln für Differentialgleichungen \(n\)-ter Ordnung. Z. Angew. Math. Mech. 40, 449–455 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fehlberg, E.: New high-order Runge-Kutta formulas with step size control for systems of first- and second-order differential equations. Z. Angew. Math. Mech. 44, T17–T29 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Friedman, A.: A new proof and generalizations of the Cauchy-Kowalewski theorem. Trans. Am. Math. Soc. 98, 1–20 (1961)

    Article  MATH  Google Scholar 

  16. Fusaro, B.A.: The Cauchy-Kowalewski theorem and a singular initial value problem. SIAM Rev. 10, 417–421 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gekeler, E., Widmann, R.: On the order conditions of Runge-Kutta methods with higher derivatives. Numer. Math. 50(2), 183–203 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goeken, D., Johnson, O.: Fifth-order Runge-Kutta with higher order derivative approximations. In: Proceedings of the 15th Annual Conference of Applied Mathematics (Edmond, OK, 1999), Electron. J. Differ. Equ. Conf., vol. 2, pp. 1–9 (electronic). Southwest Texas State University, San Marcos, TX (1999)

  19. Goeken, D., Johnson, O.: Runge-Kutta with higher order derivative approximations. Appl. Numer. Math. 34(2–3), 207–218 (2000). Auckland numerical ordinary differential equations (Auckland, 1998)

    Google Scholar 

  20. Gottlieb, S.: On high order strong stability preserving Runge-Kutta and multi step time discretizations. J. Sci. Comput. 25(1–2), 105–128 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. Am. 67(221), 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (electronic) (2001)

    Google Scholar 

  23. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. Springer, Berlin (1991)

    Book  Google Scholar 

  24. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 1, 3rd edn. Springer, Berlin (2009)

  25. Hairer, E., Wanner, G.: Multistep-multistage-multiderivative methods of ordinary differential equations. Computing (Arch. Elektron. Rechnen) 11(3), 287–303 (1973)

    MATH  MathSciNet  Google Scholar 

  26. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)

    MATH  MathSciNet  Google Scholar 

  27. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207(2), 542–567 (2005)

    Article  MATH  Google Scholar 

  30. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kastlunger, K., Wanner, G.: On Turán type implicit Runge-Kutta methods. Computing (Arch. Elektron. Rechnen) 9, 317–325 (1972)

    Google Scholar 

  32. Kastlunger, K.H., Wanner, G.: Runge Kutta processes with multiple nodes. Computing (Arch. Elektron. Rechnen) 9, 9–24 (1972)

    MATH  MathSciNet  Google Scholar 

  33. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  34. Ketcheson, D.I.: Runge-Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Krivodonova, L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226(1), 879–896 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lax, P., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  37. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  38. Liu, W., Cheng, J., Shu, C.W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lu, C., Qiu, J.: Simulations of shallow water equations with finite difference Lax-Wendroff weighted essentially non-oscillatory schemes. J. Sci. Comput. 47(3), 281–302 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Mitsui, T.: Runge-Kutta type integration formulas including the evaluation of the second derivative. I. Publ. Res. Inst. Math. Sci. 18(1), 325–364 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  41. Montecinos, G., Castro, C.E., Dumbser, M., Toro, E.F.: Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms. J. Comput. Phys. 231(19), 6472–6494 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nguyen-Ba, T., Božić, V., Kengne, E., Vaillancourt, R.: Nine-stage multi-derivative Runge-Kutta method of order 12. Publ. Inst. Math. (Beograd) (N.S.) 86(100), 75–96 (2009)

    Article  MathSciNet  Google Scholar 

  43. Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Obreschkoff, N.: Neue Quadraturformeln. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1940(4), 20 (1940)

  45. Ono, H., Yoshida, T.: Two-stage explicit Runge-Kutta type methods using derivatives. Jpn. J. Ind. Appl. Math. 21(3), 361–374 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Qiu, J.: A numerical comparison of the Lax-Wendroff discontinuous Galerkin method based on different numerical fluxes. J. Sci. Comput. 30(3), 345–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. Qiu, J.: WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations. J. Comput. Appl. Math. 200(2), 591–605 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Qiu, J., Dumbser, M., Shu, C.W.: The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  49. Qiu, J., Shu, C.W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  51. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  52. Rossmanith, J.: DoGPack software (2013). Available from http://www.dogpack-code.org

  53. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Rusanov, V.V.: The calculation of the interaction of non-stationary shock waves with barriers. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267–279 (1961)

    MathSciNet  Google Scholar 

  55. Seal, D.C.: Discontinuous Galerkin methods for Vlasov models of plasma. Ph.D. thesis, Madison, WI, University of Wisconsin, Madison, WI (2012)

  56. Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima Math. J. 1, 349–372 (1971)

    MATH  MathSciNet  Google Scholar 

  57. Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)

    MATH  MathSciNet  Google Scholar 

  58. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

  59. Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid Dyn. 17(2), 107–118 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  60. Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  61. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  62. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  63. Stancu, D.D., Stroud, A.H.: Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math. Comput. 17, 384–394 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  64. Taube, A., Dumbser, M., Balsara, D.S., Munz, C.D.: Arbitrary high-order discontinuous Galerkin schemes for the magnetohydrodynamic equations. J. Sci. Comput. 30(3), 441–464 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  65. Titarev, V.A., Toro, E.F.: ADER: Arbitrary high order Godunov approach. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 609–618 (2002)

  66. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715–736 (2005)

    Google Scholar 

  67. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn. Springer, Berlin (1999)

  68. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)

  69. Toro, E.F., Titarev, V.A.: ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions. J. Comput. Phys. 202(1), 196–215 (2005)

    Google Scholar 

  70. Toro, E.F., Titarev, V.A.: TVD fluxes for the high-order ADER schemes. J. Sci. Comput. 24(3), 285–309 (2005)

    Google Scholar 

  71. Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A), 30–37 (1950)

  72. Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  73. Yoshida, T., Ono, H.: Two stage explicit Runge-Kutta type method using second and third derivatives. IPSJ J. 44(1), 82–87 (2003)

    MathSciNet  Google Scholar 

  74. Zurmühl, R.: Runge-Kutta-Verfahren unter Verwendung höherer Ableitungen. Z. Angew. Math. Mech. 32, 153–154 (1952)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by Air Force Office of Scientific Research grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, and by National Science Foundation Grant number DMS-1115709. We would like to thank Matthew F. Causley for discussing multiderivative methods with us, and Qi Tang for useful discussions on the WENO method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Seal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, D.C., Güçlü, Y. & Christlieb, A.J. High-Order Multiderivative Time Integrators for Hyperbolic Conservation Laws. J Sci Comput 60, 101–140 (2014). https://doi.org/10.1007/s10915-013-9787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9787-8

Keywords

Navigation