Skip to main content
Log in

A Higher Order Ensemble Simulation Algorithm for Fluid Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This report presents an efficient, higher order method for fast calculation of an ensemble of solutions of the Navier–Stokes equations. We give a complete stability and convergence analysis of the method for laminar flows and an extension to turbulent flows. For high Reynolds number flows, we propose and analyze an eddy viscosity model with a recent reparameterization of the mixing length. This turbulence model depends on an ensemble mean compatible with the higher order method. We show the turbulence model has superior stability, also demonstrated in numerical tests. We also give tests showing the potential of the new method for exploring flow problems to compute turbulence intensities, effective Lyapunov exponents, windows of predictability and to verify the selective decay principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, W.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anitescu, M., Layton, W.J.: Sensitivities in large eddy simulation and improved estimates of turbulent flow functionals. SIAM J. Sci. Comput. 29, 1650–1667 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boffetta, G., Celani, A., Crisanti, A., Vulpiani, A.: Predictability in two-dimensional decaying turbulence. Phys. Fluids 9(3), 724–734 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berselli, L.C.: On the large eddy simulation of the Taylor–Green vortex. J. Math. Fluid Mech. 7, S164–S191 (2005)

  5. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Burman, E., Linke, A.: Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements. Appl. Numer. Math. 58, 1704–1719 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carney, M., Cunningham, P., Dowling, J., Lee, C.: Predicting probability distributions for surf height using an ensemble of mixture density networks. In: International Conference on Machine Learning (2005)

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31, 61–73 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ethier, C., Steinman, D.: Exact fully 3D Navier–Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19(5), 369–375 (1994)

    Article  MATH  Google Scholar 

  10. Feng, Y.T., Owen, D.R.J., Peric, D.: A block conjugate gradient method applied to linear systems with multiple right hand sides. Comput. Methods Appl. Mech. Eng. 127, 203–215 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freund, R.W., Malhotra, M.: A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides. Linear Algebra Appl. 254, 119–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallopulos, E., Simoncini, V.: Convergence properties of block GMRES and matrix polynomials. Linear Algebra Appl. 247, 97–119 (1996)

    Article  MathSciNet  Google Scholar 

  13. Ghil, M., Benzi, R., Parisi, G.: Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. North Holland, Amsterdam (1985)

    Google Scholar 

  14. Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)

    Article  MATH  Google Scholar 

  15. Giraldo, J.D., García Galiano, S.G.: Building hazard maps of extreme daily rainy events from PDF ensemble, via REA method, on Senegal River Basin. Hydrol. Earth Syst. Sci. 15, 3605–3615 (2011)

    Article  Google Scholar 

  16. Gunzburger, M.D.: Finite Element Methods for Viscous Incompressible Flows–A Guide to Theory, Practices, and Algorithms. Academic Press, London (1989)

    Google Scholar 

  17. Girault, V., Raviart, P.: Finite element approximation of the Navier–Stokes equations, Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

  18. Green, A.E., Taylor, G.I.: Mechanism of the production of small eddies from larger ones. Proc. R. Soc. A. 158, 499–521 (1937)

    Article  MATH  Google Scholar 

  19. Guermond, J.L., Quartapelle, L.: On stability and convergence of projection methods based on pressure Poisson equation. Int. J. Numer. Methods Fluids 26, 1039–1053 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4, 273–301 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity models of fluid motion. Numer. Methods Partial Differ. Equ. doi:10.1002/num.21908

  22. Kalnay, E.: Atmospheric modelling, data assimilation and predictability. Cambridge University, Cambridge (2003)

    Google Scholar 

  23. Lewis, J.M.: Roots of ensemble forecasting. Mon. Weather Rev. 133, 1865–1885 (2005)

    Article  Google Scholar 

  24. Karniadakis, G., Israeli, M., Orszag, S.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Le Maitre, O.P., Kino, O.M.: Spectral Methods for Uncertainty Quantification. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  26. Moffatt, H.K., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)

    Article  MathSciNet  Google Scholar 

  27. Leutbecher, M., Palmer, T.N.: Ensemble forecasting. J. Comput. Phys. 227, 3515–3539 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Martin, W.J., Xue, M.: Initial condition sensitivity analysis of a mesoscale forecast using very-large ensembles. Mon. Weather Rev. 134, 192–207 (2006)

    Article  Google Scholar 

  29. Majda, A., Wang, X.: Nonlinear dynamics and statistical theories for basic geophysical flows. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  30. Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity for formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229, 4291–4303 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toth, Z., Kalney, E.: Ensemble forecasting at NMC: the generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330 (1993)

    Article  Google Scholar 

  33. Varah, J.: Stability restrictions on second-order, three level finite difference schemes for parabolic equations. SIAM J. Numer. Anal. 17, 300–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, X.: An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier–Stokes equations. Numer. Math. 121, 753–779 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Walburn, F.J., Sabbah, H.N., Stein, P.D.: An experimental evaluation of the use of an ensemble average for the calculation of turbulence in pulsatile flow. Ann. Biomed. Eng. 11, 385–399 (1983)

    Article  Google Scholar 

  36. Zhang, S.: A family of \(Qk+1, k \times Qk, k+1\) divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Additional information

The research of the author described herein was partially supported by NSF Grant DMS 1216465 and Air Force Grant FA 9550-12-1-0191.

Appendix: Proof of Theorem 3

Appendix: Proof of Theorem 3

The true solution\((u_{j}, p_j)\) of the NSE satisfies

$$\begin{aligned}&\left( \frac{3u_{j}^{n+1}-4u_{j}^{n}+u_j^{n-1}}{2 \Delta t}, v_{h}\right) + b^{*}\left( u_{j}^{n+1}, u_{j}^{n+1}, v_{h}\right) + \nu \left( \nabla u_{j}^{n+1}, \nabla v_{h}\right) \nonumber \\&\quad -\, \left( p_{j}^{n+1},\nabla \cdot v_{h}\right) =\left( f_{j}^{n+1}, v_{h}\right) + Intp\left( u_{j}^{n+1};v_{h}\right) , \quad \text {for all } v_{h}\in V_{h}, \end{aligned}$$
(8.1)

where \(Intp\left( u_{j}^{n+1};v_{h}\right) \) is defined as

$$\begin{aligned} Intp\left( u_{j}^{n+1};v_{h}\right) =\left( \frac{3u_{j}^{n+1}-4u_{j}^{n}+u_j^{n-1}}{2\Delta t}-u_{j,t}(t^{n+1}),v_{h}\right) . \end{aligned}$$

Let \(e_{j}^{n}=u_{j}^{n}-u_{j,h}^{n}=\left( u_{j}^{n}-I_{h} u_{j}^{n}\right) +\left( I_{h} u_{j}^{n}-u_{j,h}^{n}\right) =\eta _{j}^{n}+\xi _{j,h}^{n}\), where \(I_{h} u_{j}^{n} \in V_{h} \) is an interpolant of \(u_{j}^{n}\) in \(V_{h}\). Subtracting (5.1) from (8.1) gives

$$\begin{aligned}&\left( \frac{3\xi _{j,h}^{n+1}-4\xi _{j,h}^{n}+\xi _{j,h}^{n-1}}{2\Delta t},v_{h}\right) +b^{*}\left( u_{j}^{n+1},u_{j}^{n+1},v_{h}\right) +\nu \left( \nabla \xi _{j,h}^{n+1},\nabla v_{h}\right) \nonumber \\&\quad -\,b^{*}\left( 2u_{j,h}^{n}-u_{j,h}^{n-1}\!-\!u_{j,h}^{\prime n},u_{j,h}^{n+1},v_{h}\right) \! -\!b^{*}\left( u_{j,h}^{\prime n},2u_{j,h}^{n}-u_{j,h}^{n-1},v_{h}\right) -\left( p_{j}^{n+1},\nabla \cdot v_{h}\right) \nonumber \\&\qquad = -\left( \frac{3\eta _{j}^{n+1}-4\eta _{j}^{n}+\eta _j^{n-1}}{2\Delta t},v_{h}\right) -\nu \left( \nabla \eta _{j}^{n+1},\nabla v_{h}\right) +Intp\left( u_j^{n+1};v_{h}\right) \!\!. \end{aligned}$$
(8.2)

Set \(v_{h}=\xi _{j,h}^{n+1}\in V_{h}\), and rearrange the nonlinear terms, then we have

$$\begin{aligned}&\frac{1}{4\Delta t}\left( \left\| \xi _{j,h}^{n+1}\right\| ^{2}+\left\| 2\xi _{j,h}^{n+1}-\xi _{j,h}^{n}\right\| ^{2}\right) -\frac{1}{4\Delta t}\left( \left\| \xi _{j,h}^{n}\right\| ^{2}+\left\| 2\xi _{j,h}^{n}-\xi _{j,h}^{n-1}\right\| ^{2}\right) \nonumber \\&\quad +\,\frac{1}{4\Delta t}\left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| ^{2} +\nu \left\| \nabla \xi _{j,h}^{n+1}\right\| ^2\nonumber \\&\quad =-b^{*}\left( u_{j}^{n+1},u_{j}^{n+1},\xi _{j,h}^{n+1}\right) +b^{*}\left( 2u_{j,h}^{n}-u_{j,h}^{n-1},u_{j,h}^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \quad +\,b^{*}\left( u_{j,h}^{\prime n},2u_{j,h}^{n}-u_{j,h}^{n-1}-u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) +\left( p_{j}^{n+1},\nabla \cdot \xi _{j,h}^{n+1}\right) \nonumber \\&\quad \quad -\,\left( \frac{3\eta _{j}^{n+1}-4\eta _{j}^{n}+\eta _j^{n-1}}{ 2\Delta t},\xi _{j,h}^{n+1}\right) -\nu \left( \nabla \eta _{j}^{n+1},\nabla \xi _{j,h}^{n+1}\right) +Intp\left( u_j^{n+1};\xi _{j,h}^{n+1}\right) .\nonumber \\ \end{aligned}$$
(8.3)

Now we bound the right hand side of Eq. (8.3). First, for the nonlinear term, adding and subtracting \(b^{*}(u_{j}^{n+1},u_{j,h}^{n+1} ,\xi _{j,h}^{n+1})\), \(b^{*}(2u^{n}_j-u^{n-1}_j, u_{j,h}^{n+1}, \xi _{j,h}^{n+1})\) and \(b^{*}(u_{j,h}^{\prime n},2u_{j}^{n}-u_{j}^{n-1}-u_j^{n+1},\xi _{j,h}^{n+1})\), we have

$$\begin{aligned}&-b^{*}\left( u_{j}^{n+1},u_{j}^{n+1},\xi _{j,h}^{n+1}\right) +b^{*}\left( 2u_{j,h}^{n}-u_{j,h}^{n-1}, u_{j,h}^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad +\,b^{*}\left( u_{j,h}^{\prime n},2u_{j,h}^{n}-u_{j,h}^{n-1}-u^{n+1}_{j,h},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad =-b^{*}\left( u_{j}^{n+1},\eta _{j}^{n+1},\xi _{j,h}^{n+1}\right) -b^{*}\left( u_{j}^{n+1} -\left( 2u_{j}^{n}-u_j^{n-1}\right) ,u_{j,h}^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \quad -\,b^*\left( 2\eta ^n_j-\eta ^{n-1}_j, u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) -b^*\left( 2\xi ^n_{j,h}-\xi ^{n-1}_{j,h}, u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) \nonumber \\&\quad \quad -\,b^{*}\left( u_{j,h}^{\prime n},2\xi _{j,h}^{n} -\xi _{j,h}^{n-1}-\xi _{j,h}^{n+1},\xi _{j,h}^{n+1}\right) -b^{*}\left( u_{j,h}^{\prime n},2\eta _j^{n}-\eta _j^{n-1}-\eta _j^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \quad +\,b^{*}\left( u_{j,h}^{\prime n},2u_{j}^{n}-u_{j}^{n-1}-u^{n+1}_{j},\xi _{j,h}^{n+1}\right) . \end{aligned}$$
(8.4)

We estimate the nonlinear terms using (2.2), (2.3) and Young’s inequality as follows.

$$\begin{aligned}&b^{*}\left( u_{j}^{n+1},\eta _{j}^{n+1},\xi _{j,h}^{n+1}\right) \le C\left\| \nabla u_{j}^{n+1}\right\| \left\| \nabla \eta _{j}^{n+1}\right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+C\nu ^{-1}\left\| \nabla u_{j}^{n+1}\right\| ^{2}\left\| \nabla \eta _{j}^{n+1}\right\| ^{2}. \end{aligned}$$
(8.5)
$$\begin{aligned}&b^{*}\left( u_{j}^{n+1}-\left( 2u_{j}^{n}-u_j^{n-1}\right) ,u_{j,h}^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \le C\left\| \nabla \left( u_{j}^{n+1}-2u_{j}^{n}+u_j^{n-1}\right) \right\| \left\| \nabla u_{j,h}^{n+1}\right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+C\nu ^{-1}\Delta t^3 \left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla u_{j,tt} \right\| ^{2} dt\right) \left\| \nabla u_{j,h}^{n+1}\right\| ^{2}. \end{aligned}$$
(8.6)
$$\begin{aligned}&b^*\left( 2\eta ^n_j-\eta ^{n-1}_j, u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) \le C\left\| \nabla \left( 2\eta ^n_j-\eta ^{n-1}_j\right) \right\| \left\| \nabla u_{j,h}^{n+1}\right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+C\nu ^{-1}\left( \left\| \nabla \eta ^n_j \right\| ^{2}+\left\| \nabla \eta ^{n-1}_j \right\| ^{2}\right) \left\| \nabla u_{j,h}^{n+1}\right\| ^{2}. \end{aligned}$$
(8.7)
$$\begin{aligned}&2b^*\left( \xi ^n_{j,h}, u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) \le C\left\| \nabla \xi ^n_{j,h} \right\| ^{\frac{1}{2}} \left\| \xi ^n_{j,h}\right\| ^{\frac{1}{2}}\left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le C\left( \epsilon \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{1}{\epsilon }\left\| \nabla \xi ^n_{j,h} \right\| \left\| \xi ^n_{j,h} \right\| \right) \nonumber \\&\quad \le C\left( \epsilon \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{1}{\epsilon }\left( \delta \left\| \nabla \xi ^n_{j,h} \right\| ^2+\frac{1}{\delta }\left\| \xi ^n_{j,h} \right\| ^2\right) \right) \nonumber \\&\quad \le \left( \frac{\nu }{64} \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{\nu }{16} \left\| \nabla \xi ^n_{j,h} \right\| ^2\right) +C\nu ^{-3}\left\| \xi ^n_{j,h} \right\| ^2 . \end{aligned}$$
(8.8)

Similarly,

$$\begin{aligned} b^*\left( \xi ^{n-1}_{j,h}, u_{j,h}^{n+1}, \xi _{j,h}^{n+1}\right) \le \left( \frac{\nu }{64} \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{\nu }{16} \left\| \nabla \xi ^{n-1}_{j,h} \right\| ^2\right) +C\nu ^{-3}\left\| \xi ^{n-1}_{j,h} \right\| ^2. \end{aligned}$$
(8.9)

By skew symmetry and inequalities (2.4) and (2.5), we have

$$\begin{aligned}&b^{*}\left( u_{j,h}^{\prime n},2\xi _{j,h}^{n}-\xi _{j,h}^{n-1}-\xi _{j,h}^{n+1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \le C \left\| \nabla u_{j,h}^{\prime n} \right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \left\| \nabla (\xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1})\right\| ^{1/2}\left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| ^{1/2} \nonumber \\&\quad \le C \left\| \nabla u_{j,h}^{\prime n} \right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \left( h^{-1/2}\right) \left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| \nonumber \\&\quad \le \frac{1}{8\Delta t}\left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| ^{2} +\frac{C_e}{16}\frac{\Delta t}{h}\left\| \nabla u_{j,h}^{\prime n} \right\| ^2\left\| \nabla \xi ^{n+1}_{j,h} \right\| ^{2}. \end{aligned}$$
(8.10)
$$\begin{aligned}&b^{*}\left( u_{j,h}^{\prime n},\eta _{j}^{n+1}-2\eta _{j}^{n}+\eta _j^{n-1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \le C\left\| \nabla u_{j,h}^{\prime n}\right\| \left\| \nabla \left( \eta _{j}^{n+1}-2\eta _{j}^{n} +\eta _j^{n-1}\right) \right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{C \Delta t^3}{\nu }\left\| \nabla u_{j,h}^{\prime n}\right\| ^{2}\left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla \eta _{j,tt}\right\| ^{2} \,dt\right) . \end{aligned}$$
(8.11)
$$\begin{aligned}&b^{*}\left( u_{j,h}^{\prime n},u_{j}^{n+1}-2u_{j}^{n}+u_j^{n-1},\xi _{j,h}^{n+1}\right) \nonumber \\&\quad \le C\left\| \nabla u_{j,h}^{\prime n}\right\| \left\| \nabla \left( u_{j}^{n+1}-2u_{j}^{n}+u_j^{n-1}\right) \right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\quad \le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+C \nu ^{-1} \Delta t^3\left\| \nabla u_{j,h}^{\prime n}\right\| ^{2}\left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla u_{j,tt}\right\| ^{2}\,dt\right) . \end{aligned}$$
(8.12)

Next, consider the pressure term. Since \(\xi _{j,h}^{n+1}\in V_{h}\) we have

$$\begin{aligned} \left( p_{j}^{n+1},\nabla \cdot \xi _{j,h}^{n+1}\right)&= \left( p_{j}^{n+1}-q_{j,h}^{n+1}, \nabla \cdot \xi _{j,h}^{n+1}\right) \nonumber \\&\le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+C \nu ^{-1}\left\| p_{j}^{n+1}-q_{j,h}^{n+1}\right\| ^{2} , \quad \forall q_{j,h}^{n+1} \in Q_h. \end{aligned}$$
(8.13)

The other terms, are bounded as

$$\begin{aligned} \left( \frac{3\eta _{j}^{n+1}-4\eta _{j}^{n}+\eta _j^{n-1}}{ 2\Delta t}, \xi _{j,h}^{n+1}\right)&\le C\left\| \frac{3\eta _{j}^{n+1}-4\eta _{j}^{n} +\eta _j^{n-1}}{ 2\Delta t}\right\| \, \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\le C \nu ^{-1}\left\| \frac{3\eta _{j}^{n+1}-4\eta _{j}^{n}+\eta _j^{n-1}}{ 2\Delta t}\right\| ^{2}+\frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}\nonumber \\&\le \frac{C}{\nu \Delta t}\int _{t^{n-1}}^{t^{n+1}}\left\| \eta _{j,t}\right\| ^{2}\; dt+\frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}. \end{aligned}$$
(8.14)
$$\begin{aligned} \nu \left( \nabla \eta _{j}^{n+1},\nabla \xi _{j,h}^{n+1}\right)&\le C\nu \left\| \nabla \eta _{j}^{n+1}\right\| ^{2}+ \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}. \end{aligned}$$
(8.15)

Finally,

$$\begin{aligned} Intp\left( u_{j}^{n+1};\xi _{j,h}^{n+1}\right)&= \left( \frac{3u_{j}^{n+1}-4u_{j}^{n}+u_j^{n-1}}{2\Delta t}-u_{j,t}(t^{n+1}),\xi _{j,h}^{n+1}\right) \nonumber \\&\le C\left\| \frac{3u_{j}^{n+1}-4u_{j}^{n}+u_j^{n-1}}{2\Delta t}-u_{j,t}(t^{n+1})\right\| \left\| \nabla \xi _{j,h}^{n+1}\right\| \nonumber \\&\le \frac{\nu }{64}\left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}+\frac{C\Delta t^3}{\nu } \int _{t^{n-1}}^{t^{n+1}}\left\| u_{j,ttt}\right\| ^{2} dt . \end{aligned}$$
(8.16)

Combining, we now have the following inequality

$$\begin{aligned}&\frac{1}{4\Delta t}\left( \left\| \xi _{j,h}^{n+1}\right\| ^{2}+\left\| 2\xi _{j,h}^{n+1} -\xi _{j,h}^{n}\right\| ^{2}\right) -\frac{1}{4\Delta t}\left( \left\| \xi _{j,h}^{n}\right\| ^{2}+\left\| 2\xi _{j,h}^{n}-\xi _{j,h}^{n-1}\right\| ^{2}\right) \nonumber \\&\quad +\,\frac{1}{8\Delta t}\left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| ^{2}+\frac{\nu }{16} \left( \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2}-\left\| \nabla \xi _{j,h}^{n}\right\| ^{2}\right) \nonumber \\&\quad +\,\frac{\nu }{16}\left( \left( \left\| \nabla \xi _{j,h}^{n+1}\right\| ^{2} +\left\| \nabla \xi _{j,h}^{n}\right\| ^{2}\right) -\left( \left\| \nabla \xi _{j,h}^{n}\right\| ^{2} +\left\| \nabla \xi _{j,h}^{n-1}\right\| ^{2}\right) \right) \nonumber \\&\quad +\,\left( \frac{\nu }{16}-\frac{C_e}{16}\frac{\Delta t}{h}\left\| \nabla u_{j,h}^{\prime n} \right\| ^2\right) \left\| \nabla \xi ^{n+1}_{j,h} \right\| ^{2} \le C\nu ^{-3}\left( \left\| \xi ^n_{j,h} \right\| ^2+\left\| \xi ^{n-1}_{j,h} \right\| ^2\right) \nonumber \\&\quad +\,C\nu ^{-1}\left\| \nabla u_{j}^{n+1}\right\| ^{2}\left\| \nabla \eta _{j}^{n+1}\right\| ^{2} +\frac{C\Delta t^3}{\nu }\left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla u_{j,tt} \right\| ^{2} dt\right) \left\| \nabla u_{j,h}^{n+1}\right\| ^{2}\nonumber \\&\quad +\,C\nu ^{-1}\left( \left\| \nabla \eta ^n_j \right\| ^{2}\!+\!\left\| \nabla \eta ^{n-1}_j \right\| ^{2}\right) \left\| \nabla u_{j,h}^{n+1}\right\| ^{2}\!+\!\frac{C \Delta t^3}{\nu }\left\| \nabla u_{j,h}^{\prime n}\right\| ^{2}\left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla \eta _{j,tt}\right\| ^{2} \;dt\right) \nonumber \\&\quad +\,\frac{C \Delta t^3}{\nu }\left\| \nabla u_{j,h}^{\prime n}\right\| ^{2} \left( \int _{t^{n-1}}^{t^{n+1}}\left\| \nabla u_{j,tt}\right\| ^{2} \;dt\right) +C \nu ^{-1}\left\| p_{j}^{n+1}-q_{j,h}^{n+1}\right\| ^{2}\nonumber \\&\quad +\,\frac{C}{\nu \Delta t}\int _{t^{n-1}}^{t^{n+1}}\left\| \eta _{j,t}\right\| ^{2}\;dt +C\nu \left\| \nabla \eta _{j}^{n+1}\right\| ^{2}+\frac{C\Delta t^3}{\nu } \int _{t^{n-1}}^{t^{n+1}}\left\| u_{j,ttt}\right\| ^{2} dt . \end{aligned}$$
(8.17)

Under (5.2), \((\frac{\nu }{16}-\frac{C_e}{16}\frac{\Delta t}{h}\left\| \nabla u_{j,h}^{\prime n} \right\| ^2)\) is nonnegative and thus can be eliminated from the LHS of (8.17). We sum (8.17) from \(n=1\) to \(n=N-1\), multiply through by \(2\Delta t\) and apply interpolation inequalities and the discrete Gronwall inequality (Girault and Raviart [17, p. 176]). This yields

$$\begin{aligned}&\frac{1}{2}\left\| \xi _{j,h}^{N}\right\| ^{2}+\frac{1}{2}\left\| 2\xi _{j,h}^{N}-\xi _{j,h}^{N-1}\right\| ^{2} +\frac{1}{4}\sum _{n=1}^{N-1}\left\| \xi _{j,h}^{n+1}-2\xi _{j,h}^{n}+\xi _{j,h}^{n-1}\right\| ^{2}\nonumber \\&\qquad +\,\frac{\nu \Delta t}{4}\left\| \nabla \xi _{j,h}^{N}\right\| ^{2} +\frac{\nu \Delta t}{8}\left\| \nabla \xi _{j,h}^{N-1}\right\| ^{2}\nonumber \\&\quad \le exp\left( \frac{C N\Delta t}{\nu ^2}\right) \Big \lbrace \frac{1}{2}\left\| \xi _{j,h}^{1}\right\| ^{2}+\frac{1}{2}\left\| 2\xi _{j,h}^{1}-\xi _{j,h}^{0}\right\| ^{2} +\frac{\nu \Delta t}{4}\left\| \nabla \xi _{j,h}^{1}\right\| ^{2}+\frac{\nu \Delta t}{8} \left\| \nabla \xi _{j,h}^{0}\right\| ^{2}\nonumber \\&\qquad +\,C\frac{h^{2k}}{\nu }\left\| \left| \nabla u_j\right| \right\| ^2_{\infty , 0}\left\| \left| u_j\right| \right\| ^2_{2, k+1} +C\frac{\Delta t^4}{\nu }\left\| \left| \nabla u_{j, tt}\right| \right\| ^2_{2,0}\nonumber \\&\qquad +\,C \frac{h^{2k}}{\nu }\left\| \left| \nabla u_{j}\right| \right\| ^{2}_{2,k+1} +C\Delta t^2 h^{2k+1}\left\| \left| \nabla u_{j, tt}\right| \right\| ^2_{2,k} +C\Delta t^3 h \left\| \left| \nabla u_{j, tt}\right| \right\| ^2_{2,0}\nonumber \\&\qquad +\,C\frac{h^{2s+2}}{\nu }\left\| \left| p_j\right| \right\| ^{2}_{2,s+1} + Ch^{2k+2}\nu ^{-1}\left\| \left| u_{t,j}\right| \right\| ^{2}_{2,k+1}\nonumber \\&\qquad +\,C\nu h^{2k}\left\| \left| \nabla u_{j} \right| \right\| _{2,k}^{2}+\frac{C{\Delta t}^{4}}{\nu }\left\| \left| u_{j,ttt}\right| \right\| ^{2}_{2,0}\Big \rbrace . \end{aligned}$$
(8.18)

Using triangle inequality on the error and absorbing constants into a new constant \(C\), we obtain Theorem 3 and Corollary 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N. A Higher Order Ensemble Simulation Algorithm for Fluid Flows. J Sci Comput 64, 264–288 (2015). https://doi.org/10.1007/s10915-014-9932-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9932-z

Keywords

Mathematics Subject Classification

Navigation