Skip to main content
Log in

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Krylov implicit integration factor (IIF) methods were developed in Chen and Zhang (J Comput Phys 230:4336–4352, 2011) for solving stiff reaction–diffusion equations on high dimensional unstructured meshes. The methods were further extended to solve stiff advection–diffusion–reaction equations in Jiang and Zhang (J Comput Phys 253:368–388, 2013). Recently we studied the computational power of Krylov subspace approximations on dealing with high dimensional problems. It was shown that the Krylov integration factor methods have linear computational complexity and are especially efficient for high dimensional convection–diffusion problems with anisotropic diffusions. In this paper, we combine the Krylov integration factor methods with sparse grid combination techniques and solve high spatial dimension convection–diffusion equations such as Fokker–Planck equations on sparse grids. Numerical examples are presented to show that significant computational times are saved by applying the Krylov integration factor methods on sparse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Briggs, W.L., Henson, V.E., and McCormick, S.F.: A multigrid tutorial. SIAM, (2000)

  3. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fokker, A.D.: Die mittlere energie rotierender elektrischer dipole im strahlungsfeld. Ann. Phys. 348, 810–820 (1914)

    Article  Google Scholar 

  7. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992)

    Google Scholar 

  9. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  10. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51(4), 747–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection–diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection–diffusion-reaction equations. J. Comput. Phys. 311, 22–44 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667–1687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleefeld, B., Khaliq, A.Q.M., Wade, B.A.: An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods Partial Differ. Equ. 28, 1309–1335 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection–diffusion problems. J. Comput. Appl. Math. submitted, (2015)

  20. Maday, Y., Patera, A.T., Ronquist, E.M.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263–292 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Planck, M.: Sitzber. Preuss. Akad. Wiss. (1917) p. 324

  25. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  26. Sjoberg, P., Lotstedt, P., Elf, J.: Fokker-planck approximation of the master equation in molecular biology. Comput. Visual Sci. 12, 37–50 (2009)

    Article  MathSciNet  Google Scholar 

  27. Trefethen, L.N., Bau, D.: Numerical Linear Algebra, SIAM, (1997)

  28. Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. v258, 585–600 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhang.

Appendix: Linear Stability Analysis of the IIF2 Scheme (7) for CDR Equations

Appendix: Linear Stability Analysis of the IIF2 Scheme (7) for CDR Equations

To analyze the linear stability of IIF schemes, we use the following scalar linear test equation

$$\begin{aligned} u_t=au-du+ru, \qquad \text{ with } r\in \mathcal {C}, \text{ and } a, d \in \mathcal {R}, d>0. \end{aligned}$$
(23)

In the context of solving CDR equations, a and d actually represent spatial discretizations for the convection term and the diffusion term respectively. Following the stability analysis approach in [22], we show boundaries of the stability regions in the complex plane for \(r\Delta t\), a family of curves for different values of \(d\Delta t\) and \(a\Delta t\), and indicate the corresponding stability regions. Here we present the analysis of the IIF2 scheme (7) as an example. More details and analysis results can be found in [12].

Fig. 8
figure 8

Linear stability regions of the IIF2 scheme (7) for different values of \(d\Delta {t}\) under a fixed value of \(a\Delta {t}\). a \(a\Delta {t}=1.0\); b \(a\Delta {t}=10.0\); c \(a\Delta {t}=-1.0\); d \(a\Delta {t}=-10.0\)

Fig. 9
figure 9

Linear stability regions of the IIF2 scheme (7) for different values of \(a\Delta {t}\) under a fixed value of \(d\Delta {t}\). a \(d\Delta {t}=1.0\); b \(d\Delta {t}=2.0\); c \(d\Delta {t}=10.0\); d \(d\Delta {t}=20.0\)

Applying the IIF2 scheme (7) to the Eq. (23) with a uniform time step size \(\Delta t\), then substituting \(u_n=e^{in\theta }\) into the resulting equation, we obtain

$$\begin{aligned} \left( 1-\frac{\lambda }{2}\right) e^{2i\theta }=e^{-d\Delta t}\left( 1+\frac{\lambda }{2}+\frac{3}{2}a\Delta t\right) e^{i\theta } -\frac{a}{2}\Delta t e^{-2d \Delta t}, \end{aligned}$$
(24)

where \(\lambda =r\Delta t\) has a real part \(\lambda _r\) and imaginary part \(\lambda _i\). Solve the Eq. (24) for \(\lambda _r\) and \(\lambda _i\) to have

$$\begin{aligned} {\left\{ \begin{array}{ll} \lambda _r=\dfrac{B_1C_2-B_2C_1}{A_1B_2-A_2B_1};\\ \lambda _i=\dfrac{A_1C_2-A_2C_1}{A_2B_1-A_1B_2}, \end{array}\right. } \end{aligned}$$
(25)

where

$$\begin{aligned} {\left\{ \begin{array}{ll}A_1=e^{-d \Delta t}\dfrac{1}{2}\cos \theta +\dfrac{1}{2}\cos 2 \theta ,\\ B_1=-e^{-d \Delta t}\dfrac{1}{2}\sin \theta -\dfrac{1}{2}\sin 2 \theta ,\\ C_1=-\dfrac{a}{2}\Delta t e^{-2d \Delta t}+e^{-d \Delta t}\left( 1+\dfrac{3}{2}a \Delta t\right) \cos \theta -\cos 2\theta ,\\ A_2=e^{-d \Delta t}\dfrac{1}{2}\sin \theta +\dfrac{1}{2}\sin 2 \theta ,\\ B_2=e^{-d \Delta t}\dfrac{1}{2}\cos \theta +\dfrac{1}{2}\cos 2 \theta ,\\ C_2=e^{-d \Delta t}\left( 1+\dfrac{3}{2}a \Delta t\right) \sin \theta -\sin 2\theta . \end{array}\right. } \end{aligned}$$
(26)

Stability regions in the complex plane of \(r\Delta t\) for different values of \(d\Delta t\) under a fixed value of \(a \Delta t\) are presented in Fig. 8. As examples we choose four different \(a \Delta t\) values: \(a \Delta t=1.0\), \(a \Delta t=10.0\) , \(a \Delta t=-1.0\) and \(a \Delta t=-10.0\). The points on boundaries of stability regions are obtained by varying \(\theta \) from 0 to \(2\pi \) in (25) and (26). A stability boundary curve divides the whole complex plane into the stable region and the unstable region for a pair of fixed values of \(d \Delta t\) and \(a \Delta t\). Based on analyzing the growth factor of the scheme (7) for some special values of \(d\Delta t\), \(a \Delta t\) and \(\lambda \), we find that the stable regions always include the point \(\lambda =(-20,0)\) for any values of \(d \Delta t\) and \(a \Delta t\) used in Fig. 8. Then stable and unstable regions are determined and shown in Fig. 8. From Fig. 8, we can see that the whole regions outside of the stability boundary curves are stable regions, which shows that the IIF2 scheme (7) has large stability regions. For a fixed \(a\Delta t\), the stable region becomes larger with the increase of the value of \(d \Delta t\). Next we show stability regions for different values of \(a\Delta t\) under a fixed value of \(d \Delta t\) in Fig. 9. \(d \Delta t=1.0\) , \(d \Delta t=2.0\), \(d \Delta t=10.0\) and \(d \Delta t=20.0\) are chosen as examples. Again, analysis of the growth factor of the scheme (7) for some special values of \(d\Delta t\), \(a \Delta t\) and \(\lambda \), we find that the stable regions always include the point \(\lambda =(-10,0)\) for any values of \(a \Delta t\) and \(d \Delta t\) used in Fig. 9. Stable regions for the cases shown in Fig. 9 are the whole regions outside of the stability boundary curves. For a fixed \(d\Delta t\), the stable region becomes smaller with the increase of the value of \(|a| \Delta t\) which corresponds to the convection terms. Based on the linear stability analysis, we conclude that the diffusion term tends to stabilize the scheme, while the convection term gives constraints on time step sizes. Due to the implicit property of the scheme, the stability regions are quite large and often include the whole left complex plane, with a relatively large size diffusion parameter d and a mild size convection parameter a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Zhang, YT. Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection–Diffusion Equations. J Sci Comput 69, 736–763 (2016). https://doi.org/10.1007/s10915-016-0216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0216-7

Keywords

Navigation