Skip to main content
Log in

A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations for which the approximate velocity field is pointwise divergence-free. The method builds on the method presented by Labeur and Wells (SIAM J Sci Comput 34(2):A889–A913, 2012). We show that with modifications of the function spaces in the method of Labeur and Wells it is possible to formulate a simple method with pointwise divergence-free velocity fields which is momentum conserving, energy stable, and pressure-robust. Theoretical results are supported by two- and three-dimensional numerical examples and for different orders of polynomial approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J Comput Phys 218(2), 794–815 (2006). https://doi.org/10.1016/j.jcp.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer series in computational mathematics, vol. 44. Springer, Berlin (2013)

    MATH  Google Scholar 

  3. Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. Part I: the Stokes problem. Math Comput 75(254), 533 (2005). https://doi.org/10.1090/S0025-5718-05-01804-1

    Article  MATH  Google Scholar 

  4. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math Comput 86, 1643 (2016). https://doi.org/10.1090/mcom/3195

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part I: the Stokes system in two space dimensions. SIAM J Numer Anal 43(4), 1627–1650 (2005). https://doi.org/10.1137/04061060X

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J Numer Anal 43(4), 1651–1672 (2005). https://doi.org/10.1137/040610659

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes equations. SIAM J Numer Anal 47(2), 1092–1125 (2009). https://doi.org/10.1137/080726653

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math Comput 74(251), 1067–1095 (2004). https://doi.org/10.1090/S0025-5718-04-01718-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2), 1319–1365 (2009). https://doi.org/10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math Comput 80(274), 723–760 (2011). https://doi.org/10.1090/S0025-5718-2010-02410-X

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et applications, vol. 69. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  12. Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations. Comput Fluids 46, 224–240 (2011). https://doi.org/10.1016/j.compfluid.2010.018

  13. Hughes, T.J.R., Wells, G.N.: Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 194(9–11), 1141–1159 (2005). https://doi.org/10.1016/j.cma.2004.06.034

    Article  MathSciNet  MATH  Google Scholar 

  14. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev 59(3), 492–544 (2017). https://doi.org/10.1137/15M1047696

    Article  MathSciNet  MATH  Google Scholar 

  15. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc Camb Philos Soc 44, 58–62 (1948). https://doi.org/10.1017/S0305004100023999

    Article  MathSciNet  MATH  Google Scholar 

  16. Labeur, R.J., Wells, G.N.: A Galerkin interface stabilisation method for the advection–diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 196(49–52), 4985–5000 (2007). https://doi.org/10.1016/j.cma.2007.06.025

    Article  MathSciNet  MATH  Google Scholar 

  17. Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM J Sci Comput 34(2), A889–A913 (2012). https://doi.org/10.1137/100818583

    Article  MathSciNet  MATH  Google Scholar 

  18. Lederer, P., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J Numer Anal 55, 1291–1314 (2017). https://doi.org/10.1137/16M1089964

    Article  MathSciNet  MATH  Google Scholar 

  19. Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput Methods Appl Mech Eng 307, 339–361 (2016). https://doi.org/10.1016/j.cma.2016.04.025

    Article  MathSciNet  Google Scholar 

  20. Linke, A., Merdon, C.: On velocity errors due to irrotational forces in the Navier-Stokes momentum balance. J Comput Phys 313, 654–661 (2016). https://doi.org/10.1016/j.jcp.2016.02.070

    Article  MathSciNet  MATH  Google Scholar 

  21. Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 311, 304 (2016). https://doi.org/10.1016/j.cma.2016.08.018

    Article  MathSciNet  Google Scholar 

  22. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput Methods Appl Mech Eng 199(9–12), 582–597 (2010). https://doi.org/10.1016/j.cma.2009.10.007

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J Comput Phys 230(4), 1147–1170 (2011). https://doi.org/10.1016/j.jcp.2010.032

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J Numer Anal 36(4), 1943–1967 (2016). https://doi.org/10.1093/imanum/drv067

    Article  MathSciNet  Google Scholar 

  25. Rhebergen, S., Cockburn, B.: A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J Comput Phys 231(11), 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011

    Article  MathSciNet  MATH  Google Scholar 

  26. Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J Numer Anal 55(4), 1982–2003 (2017). https://doi.org/10.1137/16M1083839

    Article  MathSciNet  MATH  Google Scholar 

  27. Rhebergen S., Wells, G.N.: Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations (2018). arXiv:1801.04707

  28. Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J Comput Phys 233(15), 339–358 (2013). https://doi.org/10.1016/j.jcp.2012.08.052

    Article  MathSciNet  MATH  Google Scholar 

  29. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II, pp. 547–566. Vieweg+Teubner Verlag, Halle (1996)

    Chapter  Google Scholar 

  30. Schöberl, J.: C++11 implementation of finite elements in NGSolve. Technical Report, ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf. Accessed 1 Sept 2016

  31. Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J Comput Phys 222(1), 391–407 (2007). https://doi.org/10.1016/j.jcp.2006.07.029

    Article  MathSciNet  MATH  Google Scholar 

  32. Wells, G.N.: Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J Numer Anal 49(1), 87–109 (2011). https://doi.org/10.1137/090775464

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander Rhebergen.

Additional information

SR gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through the Discovery Grant Program (RGPIN-05606-2015) and the Discovery Accelerator Supplement (RGPAS-478018-2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhebergen, S., Wells, G.N. A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field. J Sci Comput 76, 1484–1501 (2018). https://doi.org/10.1007/s10915-018-0671-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0671-4

Keywords

Navigation