Skip to main content
Log in

A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A unified fast time-stepping method for both fractional integral and derivative operators is proposed. The fractional operator is decomposed into a local part with memory length \(\varDelta T\) and a history part, where the local part is approximated by the direct convolution method and the history part is approximated by a fast memory-saving method. The fast method has \(O(n_0+\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) active memory and \(O(n_0n_T+ (n_T-n_0)\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) operations, where \(L=\log (n_T-n_0)\), \(n_0={\varDelta T}/\tau ,n_T=T/\tau \), \(\tau \) is the stepsize, T is the final time, and \({q}_{\alpha }{(N_{\ell })}\) is the number of quadrature points used in the truncated Laguerre–Gauss (LG) quadrature. The error bound of the present fast method is analyzed. It is shown that the error from the truncated LG quadrature is independent of the stepsize, and can be made arbitrarily small by choosing suitable parameters that are given explicitly. Numerical examples are presented to verify the effectiveness of the current fast method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banjai, L., López-Fernández, M., Schädle, A.: Fast and oblivious algorithms for dissipative and two-dimensional wave equations. SIAM J. Numer. Anal. 55(2), 621–639 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beylkin, G., Monzn, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Amore, L., Murli, A., Rizzardi, M.: An extension of the Henrici formula for Laplace transform inversion. Inverse Probl. 16(5), 1441–1456 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 17(3), 479–493 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  9. Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galeone, L., Garrappa, R.: Fractional Adams–Moulton methods. Math. Comput. Simul. 79(4), 1358–1367 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gatteschi, L.: Asymptotics and bounds for the zeros of laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1), 7–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64(10), 3377–3388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2015)

    Google Scholar 

  18. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31(6), 4696–4714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71(2), 785–803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luchko, Y.: Initial-boundary problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mastroianni, G., Monegato, G.: Truncated quadrature rules over \((0,\infty )\) and Nyström-type methods. SIAM J. Numer. Anal. 41, 1870–1892 (2006)

    MATH  Google Scholar 

  26. Mastroianni, G., Monegato, G.: Some new applications of truncated Gauss–Laguerre quadrature formulas. Numer. Algorithms 49, 283–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34(6), A3039–A3056 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. McLean, W.: Exponential sum approximations for \(t^{-\beta }\) p. arXiv:1606.00123 (2016)

  29. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Podlubny, I.: Fractional differential equations. Academic Press Inc, San Diego (1999)

    MATH  Google Scholar 

  32. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  33. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Tang, T., Wang, L.L.: Spectral Methods, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011)

    Google Scholar 

  35. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, Zz, Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, C.L., Wang, Z.Q., Jia, H.L.: An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels. J. Sci. Comput. 72, 647–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, D., Xiao, A.: Dissipativity and contractivity for fractional-order systems. Nonlinear Dyn. 80(1), 287–294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Weideman, J.A.C.: Optimizing talbots contours for the inversion of the laplace transform. SIAM J. Numer. Anal. 44(6), 2342–2362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393(2), 434–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yan, Y., Sun, Z.Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  43. Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016)

    Article  MathSciNet  Google Scholar 

  44. Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhai Zeng.

Additional information

This work was supported by ARC Discovery Project DP150103675.

Proofs

Proofs

1.1 Proof of Theorem 1.

Proof

We follow the proof of Theorem 2.2 in [41]. We first expand \(g(\lambda )=e^{-t\lambda }\) in terms of the Laguerre polynomials, i.e., \(g(\lambda )=\sum _{n=0}^{\infty }a_nL_n^{(\alpha )}(\lambda ),\) where

$$\begin{aligned}a_n=\frac{\varGamma (n+1)}{\varGamma (n+1+\alpha )} \int _0^{\infty }\lambda ^{\alpha } e^{-\lambda } g(\lambda )L_n^{(\alpha )}(\lambda )\,\mathrm{d}\lambda =\frac{t^n}{(t+1)^{n+1+\alpha }}. \end{aligned}$$

The following property will be used, see [41],

$$\begin{aligned} \big |Q_N^{\alpha }[L_n^{(\alpha )}]\big | \le \left\{ \begin{aligned}&2\varGamma (1+\alpha ),{\quad }-1<\alpha \le 0,\\&2^{1+\alpha }{\varGamma (n+1+\alpha )}/{\varGamma (n+1)},{\quad }\alpha >0. \end{aligned}\right. \end{aligned}$$

With the above two equations and \(J^{\alpha }[e^{-t\lambda }]- Q_N^{\alpha }[e^{-t\lambda }] =\sum _{n=2N}^{\infty }a_nQ_N^{\alpha }[L_n^{(\alpha )}]\) gives

$$\begin{aligned} \big |J^{\alpha }[e^{-t\lambda }]- Q_N^{\alpha }[e^{-t\lambda }]\big | \le \left\{ \begin{aligned}&2^{1+\alpha }\varGamma (1+\alpha )\sum _{n=2N}^{\infty }a_n ,{\quad }-1<\alpha \le 0,\\&c_{\alpha }2^{1+\alpha }\sum _{n=2N}^{\infty }n^{\alpha }a_n,{\quad }\alpha >0. \end{aligned}\right. \end{aligned}$$
(54)

Let \(q=t/(1+t)\). Then we have \(\sum _{n=2N}^{\infty }a_n=(1+t)^{-\alpha }q^{2N}\) for \(-1<\alpha \le 0\). For \(\alpha >0\), one has

$$\begin{aligned} \sum _{n=2N}^{\infty }n^{\alpha }a_n=(1+t)^{-\alpha }q^{2N}(2N)^{\alpha } \sum _{n=0}^{\infty }q^n\Big (1+\frac{n}{2N}\Big )^{\alpha } \le C_{\alpha ,t} 2^{\alpha }(1+t)^{1-\alpha }q^{2N}N^{\alpha }, \end{aligned}$$

where \(C_{\alpha ,t} =\sum _{n=0}^{\infty }(n+2)^{\alpha }q^{2Nn}\) is used. With the above equation and (54) yields (42) for \(T=1\). Using the following relation

$$\begin{aligned} \big |J^{\alpha }[T,e^{-t\lambda }]- Q_N^{\alpha }[T,e^{-t\lambda }]\big | =T^{-\alpha -1}\big |J^{\alpha }[e^{-(t/T)\lambda }]- Q_N^{\alpha }[e^{-(t/T)\lambda }]\big | \end{aligned}$$

leads to (42) for any \(T>0\). The proof is complete. \(\square \)

1.2 Proof of Theorem 2.

Proof

The following results can be found in [12],

$$\begin{aligned}&{\lambda }_j < \frac{2j+\alpha +3}{2N+\alpha +3} \Big (2j+\alpha +3+\sqrt{(2j+\alpha +3)^2 +0.25-\alpha ^2}\Big ), \end{aligned}$$
(55)
$$\begin{aligned}&{\lambda }_j > \frac{2(J_{\alpha ,j}/2)^2}{2N+\alpha +3},{\quad } J_{\alpha ,j}=\pi (j+3/4+\alpha /2)+O(j^{-1}), \end{aligned}$$
(56)

where (56) holds when j is sufficiently large. For a sufficiently large N, the Laguerre polynomial satisfies (see (7.14) in [34])

$$\begin{aligned} \big |L^{(\alpha )}_N(x)\big | \approx \pi ^{-1/2}(Nx)^{-1/4}e^{x/2}, {\quad }\forall x\ge 0. \end{aligned}$$
(57)

With (55)–(57) and (41), we have the following estimate

$$\begin{aligned} {w}^{(\alpha )}_j\le C_{\alpha }(N+1)^{\alpha } \left( \frac{j+1}{N+1}\right) ^3e^{-{\lambda }_j} \le C(N+1)^{\alpha } e^{-{\lambda }_j}, \end{aligned}$$
(58)

for sufficiently large j, where \({\lambda }_j=\theta _j(j+1)^2/(N+1)\) and \(\theta _j\) is bounded and approximately between \(\pi ^2/4\) and 4. The proof is completed. \(\square \)

1.3 Proof of Theorem 3.

Proof

For notational simplicity, we denote

$$\begin{aligned} \widehat{T}_{\ell }=T_{\ell -1}+{\varDelta } T-\tau ,{\quad } \widehat{H}^n_{\ell }(s)=\hat{t}_n-T_{\ell -1}-s. \end{aligned}$$

Next, we investigate how to estimate \(N_{\ell }\) in (35), such that the LG quadrature \(Q_{N_{\ell }}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\) to the integral \(J^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\) preserves the accuracy up to \(O(\epsilon )\) for all \(s\in [s_{\ell },s_{\ell -1}]\).

From Theorem 1, we know that the error of \(Q_{N_{\ell }}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\) mainly depends on the following term

$$\begin{aligned} \left( {\widehat{H}^n_{\ell }(s)}/{\widehat{T}_{\ell }}\right) ^{2N} =\left( \frac{\hat{t}_n-s-T_{\ell -1}}{T_{\ell -1}+{\varDelta } T-\tau }\right) ^{2N}, \quad s\in [s_{\ell },s_{\ell -1}]. \end{aligned}$$

Using (34) and \(T_{\ell -1}=B^{\ell -1}\tau \) gives

$$\begin{aligned} 0\le \frac{\hat{t}_n-s-T_{\ell -1}}{T_{\ell -1}+{\varDelta } T-\tau }\le \frac{2B-1-B^{1-\ell }}{1+B^{1-\ell }({\varDelta }T/\tau -1)} =\mathcal {T}_{\ell } \le 2B-1,{\quad } \forall \ell \ge 1. \end{aligned}$$
(59)

Using the above inequality and Eq. (42) yields

$$\begin{aligned} \begin{aligned}&\big |J^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }] -Q_{N_{\ell }}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\big |\\&\quad \le C_{\alpha }\widehat{T}_{\ell }^{\alpha -1} N^{\alpha }_{\ell }\left( \frac{{\widehat{H}^n_{\ell }(s)}/{\widehat{T}_{\ell }}}{1+{\widehat{H}^n_{\ell }(s)}/{\widehat{T}_{\ell }}}\right) ^{2N_{\ell }} \le C_{\alpha }\widehat{T}_{\ell }^{\alpha -1}N^{\alpha }_{\ell } \left( \frac{\mathcal {T}_{\ell }}{1+\mathcal {T}_{\ell }}\right) ^{2N_{\ell }}. \end{aligned}\end{aligned}$$
(60)

Since the relative error of (60) is independent of \(\widehat{T}_{\ell }\), we can let \((\mathcal {T}_{\ell }/(\mathcal {T}_{\ell }+1))^{2N_{\ell }}\le \epsilon \), which yields the minimum \(N_{\ell }\) given by (36).

From (44) and (60), we derive that the pointwise error of the truncated quadrature \(Q_{N_{\ell },\epsilon _0}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\) for all \(s\in [s_{\ell },s_{\ell -1}]\) is given by

$$\begin{aligned} \begin{aligned} E^{-\alpha ,\ell }_{\epsilon ,\epsilon _0}[e^{-\widehat{H}^n_{\ell }(s)\lambda }] =\,&J^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }] -Q_{N_{\ell },\epsilon _0}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\\ =\,&\left( J^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }] -Q_{N_{\ell }}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\right) \\&\quad +\left( Q_{N_{\ell }}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }] -Q_{N_{\ell },\epsilon _0}^{-\alpha }[\widehat{T}_{\ell },e^{-\widehat{H}^n_{\ell }(s)\lambda }]\right) \\ =\,&O(\epsilon ) + O(\epsilon _0), \end{aligned} \end{aligned}$$
(61)

where \(Q_{N_{\ell },\epsilon _0}^{-\alpha }\) is defined by (44) and \(N_{\ell }\) is given by (36).

From (35) and (61), we have

$$\begin{aligned} \begin{aligned} \big |H^{\alpha }_{{\varDelta }T}(I^H_{\tau }u,t_n)-{}_FH_{\varDelta T,\tau }^{(\alpha ,n)}u\big | =\,&\Big |\frac{\sin (\alpha \pi )}{\pi }\sum _{\ell =1}^L E^{-\alpha ,\ell }_{\epsilon ,\epsilon _0} [e^{-(\hat{t}_n-T_{\ell -1}-s_{\ell -1})\lambda }y(s_{\ell -1},s_{\ell },\lambda )]\Big |\\ =\,&\Big |\frac{\sin (\alpha \pi )}{\pi }\sum _{\ell =1}^L \int _{s_{\ell }}^{s_{\ell -1}} E^{-\alpha ,\ell }_{\epsilon ,\epsilon _0}[e^{-\widehat{H}^n_{\ell }(s)\lambda }] I_{\tau }^{H}u(s)\,\mathrm{d}s\Big |\\ \le \,&C(\epsilon +\epsilon _0)\int _{0}^{\hat{t}_n}\big |I_{\tau }^{H}u(s)\big |\,\mathrm{d}s\\ \le \,&C\max \{0,t_{n+1}-\varDelta T\} \Vert u\Vert _{\infty }(\epsilon +\epsilon _0). \end{aligned} \end{aligned}$$
(62)

The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Turner, I. & Burrage, K. A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators. J Sci Comput 77, 283–307 (2018). https://doi.org/10.1007/s10915-018-0707-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0707-9

Keywords

Navigation