Skip to main content
Log in

An Adaptive Multiresolution Interior Penalty Discontinuous Galerkin Method for Wave Equations in Second Order Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a class of adaptive multiresolution (also called adaptive sparse grid) discontinuous Galerkin (DG) methods for simulating scalar wave equations in second order form in space. The two key ingredients of the schemes include an interior penalty DG formulation in the adaptive function space and two classes of multiwavelets for achieving multiresolution. In particular, the orthonormal Alpert’s multiwavelets are used to express the DG solution in terms of a hierarchical structure, and the interpolatory multiwavelets are further introduced to enhance computational efficiency in the presence of variable wave speed or nonlinear source. Some theoretical results on stability and accuracy of the proposed method are presented. Benchmark numerical tests in 2D and 3D are provided to validate the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1–3), 5–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second-order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82(1), 64–84 (1989)

    Article  MATH  Google Scholar 

  7. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3), 575–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown, D.L., Chesshire, G.S., Henshaw, W.D., Quinlan, D.J.: Overture: an object-oriented software system for solving partial differential equations in serial and parallel environments. Technical report, Los Alamos National Lab., NM (United States) (1997)

  10. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39(1–3), 143–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: Theory, Computation and Applications, vol. 11, pp. 3–50. Springer, Berlin (2000)

    Chapter  MATH  Google Scholar 

  16. Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Etienne, V., Chaljub, E., Virieux, J., Glinsky, N.: An hp-adaptive discontinuous Galerkin finite-element method for 3-d elastic wave modelling. Geophys. J. Int. 183(2), 941–962 (2010)

    Article  Google Scholar 

  18. Gottlieb, D., Orszag, S.A.: Numerical Analysis Of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  19. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381–A3409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962–A2992 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods, vol. 24. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  24. Henshaw, W.D.: A high-order accurate parallel solver for Maxwell’s equations on overlapping grids. SIAM J. Sci. Comput. 28(5), 1730–1765 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids. I time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, J., and Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method with artificial viscosity for scalar hyperbolic conservation laws in multidimensions (2019). arXiv preprint arXiv:1906.00829

  28. Huang, J., Shu, C.-W.: Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws. Numer. Methods Partial Differ. Equ. 33(2), 467–488 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joly, P.: Variational Methods for Time-Dependent Wave Propagation Problems. Volume 31 of Topics in Computational Wave Propagation, pp. 201–264. Springer, Berlin (2003)

    MATH  Google Scholar 

  30. Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshesi. the two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006)

    Article  Google Scholar 

  31. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  32. Reed, W., Hill, T.: Tiangular mesh methods for the neutron transport equation. Technical report, Los Alamos National Laboratory, Los Alamos, NM (1973)

  33. Seriani, G., Priolo, E.: Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16(3–4), 337–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao, Z., Jiang, Y., Cheng, Y.: An adaptive high-order piecewise polynomial based sparse grid collocation method with applications (2019). arXiv preprint arXiv:1912.03982

  38. Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3(1), 1–32 (2008)

    MATH  Google Scholar 

  39. Wang, Z., Tang, Q., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations. J. Comput. Phys. 314, 244–263 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47(3), 328–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Appelö for discussions on numerical examples of wave propagation, Qi Tang and Kai Huang for the assistance and discussion in code implementation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjing Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by a grant from the Simons Foundation (426993, Yuan Liu). Research is supported by NSF Grant DMS-1830838, Research is supported by NSF Grants DMS-1453661 and DMS-1720023. Research is supported by NSFC Grant 12001231 (Zhanjing Tao).

Interpolation Basis Functions

Interpolation Basis Functions

For completeness of the paper, we present details of the multiresolution interpolation basis functions, which are first introduced in [37]. We will first focus on the case in which the interpolation points are imposed in the inner domain, as implemented in Table 5. Then we discuss the case in which the points includes the cell interface points. Here, we only discuss the case when \(M=4\) and \(M=5\). For \(M=1,2,3\), we refer readers to the appendix in [27].

The basis functions in \(\tilde{W}_1\) are piecewise polynomials on \(I_l:=(0,\frac{1}{2})\) and \(I_r:=(\frac{1}{2},1)\). Note that the functions may be discontinuous at the interface \(x=1/2\), thus \(I_l\) and \(I_r\) are both defined to be open intervals. The basis functions in \(\tilde{W}_1\) in this paper are all supported on one half interval \(I_l\) or \(I_r\) and vanish on the other half. For simplicity, we will only declare the function on its support. For example, \(\psi _0(x)|_{I_r}\) gives the definition of \(\psi _0\) on \(I_r\) and indicates that \(\psi _0\) vanishes on \(I_l\).

1.1 Interpolation Points in the Inner Domain

1.1.1 \(M=4\)

The interpolation points are

$$\begin{aligned} \tilde{X}_0 = \left\{ \frac{1}{6},\frac{7}{24},\frac{1}{3},\frac{7}{12},\frac{2}{3} \right\} , \quad \tilde{X}_1 = \left\{ \frac{1}{12},\frac{7}{48},\frac{31}{48},\frac{19}{24},\frac{5}{6}\right\} . \end{aligned}$$

The basis functions in \(\tilde{W}_0^4\) and \(\tilde{W}_1^4\) are

$$\begin{aligned} \begin{array}{ll} \phi _0(x) = \frac{4}{45} (3 x-2) (3 x-1) (12 x-7) (24 x-7), \\ \phi _1(x) = -\frac{512}{189}(3 x-2) (3 x-1) (6 x-1) (12 x-7), \\ \phi _2(x) = \frac{1}{3} (3 x-2) (6 x-1) (12 x-7) (24 x-7), \\ \phi _3(x) = -\frac{32}{105}(3 x-2) (3 x-1) (6 x-1) (24 x-7), \\ \phi _4(x) = \frac{1}{27} (3 x-1) (6 x-1) (12 x-7) (24 x-7). \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} \psi _{0}(x)|_{I_l}= \frac{8}{45} (3 x-1) (6 x-1) (24 x-7) (48 x-7), \\ \psi _{1}(x)|_{I_l}= -\frac{1024}{189} (3 x-1) (6 x-1) (12 x-1) (24 x-7), \\ \psi _{2}(x)|_{I_r}= -\frac{1024}{189} (3 x-2) (6 x-5) (12 x-7) (24 x-19), \\ \psi _{3}(x)|_{I_r}= -\frac{64}{105} (3 x-2) (6 x-5) (12 x-7) (48 x-31), \\ \psi _{4}(x)|_{I_r}= \frac{2}{27} (3 x-2) (12 x-7) (24 x-19) (48 x-31) \end{array} \end{aligned}$$

1.1.2 \(M=5\)

The interpolation points are

$$\begin{aligned} \tilde{X}_0 = \left\{ \frac{1}{12},\frac{1}{6},\frac{7}{24},\frac{1}{3},\frac{7}{12},\frac{2}{3} \right\} , \quad \tilde{X}_1 = \left\{ \frac{7}{48},\frac{1}{24},\frac{31}{48},\frac{19}{24},\frac{5}{6},\frac{13}{24} \right\} . \end{aligned}$$

The basis functions in \(\tilde{W}_0^5\) and \(\tilde{W}_1^5\) are

$$\begin{aligned} \begin{array}{ll} \phi _0(x) = \frac{1}{315} (-16) (3 x-2) (3 x-1) (6 x-1) (12 x-7) (24 x-7), \\ \phi _1(x) = \frac{4}{45} (3 x-2) (3 x-1) (12 x-7) (12 x-1) (24 x-7), \\ \phi _2(x) = -\frac{1024}{945}(3 x-2) (3 x-1) (6 x-1) (12 x-7) (12 x-1), \\ \phi _3(x) = \frac{1}{9} (3 x-2) (6 x-1) (12 x-7) (12 x-1) (24 x-7), \\ \phi _4(x) = -\frac{16}{315} (3 x-2) (3 x-1) (6 x-1) (12 x-1) (24 x-7), \\ \phi _5(x) = \frac{1}{189} (3 x-1) (6 x-1) (12 x-7) (12 x-1) (24 x-7), \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} \psi _{0}(x)|_{I_l}= -\frac{2048}{945} (3 x-1) (6 x-1) (12 x-1) (24 x-7) (24 x-1), \\ \psi _{1}(x)|_{I_l}= -\frac{32}{315} (3 x-1) (6 x-1) (12 x-1) (24 x-7) (48 x-7), \\ \psi _{2}(x)|_{I_r}= -\frac{2048}{945} (3 x-2) (6 x-5) (12 x-7) (24 x-19) (24 x-13), \\ \psi _{3}(x)|_{I_r}= -\frac{32}{315} (3 x-2) (6 x-5) (12 x-7) (24 x-13) (48 x-31), \\ \psi _{4}(x)|_{I_r}= \frac{2}{189} (3 x-2) (12 x-7) (24 x-19) (24 x-13) (48 x-31), \\ \psi _{5}(x)|_{I_r}= -\frac{32}{315} (3 x-2) (6 x-5) (12 x-7) (24 x-19) (48 x-31) \end{array} \end{aligned}$$

1.2 Interpolation Points with the Interface Points

1.2.1 \(M=4\)

The interpolation points are

$$\begin{aligned} \tilde{X}_0 = \left\{ 0^+,\left( \frac{1}{4}\right) ^-, \left( \frac{1}{2}\right) ^-, \left( \frac{3}{4}\right) ^-, 1^- \right\} , \quad \tilde{X}_1 = \left\{ \left( \frac{1}{8}\right) ^-, \left( \frac{3}{8}\right) ^-, \left( \frac{1}{2}\right) ^+, \left( \frac{5}{8}\right) ^-, \left( \frac{7}{8}\right) ^- \right\} . \end{aligned}$$

The basis functions in \(\tilde{W}_0^4\) and \(\tilde{W}_1^4\) are

$$\begin{aligned} \begin{array}{ll} \phi _0(x) = \frac{1}{3} (x-1) (2 x-1) (4 x-3) (4 x-1), \\ \phi _1(x) = -\frac{16}{3} (x-1) x (2 x-1) (4 x-3), \\ \phi _2(x) = 4 (x-1) x (4 x-3) (4 x-1), \\ \phi _3(x) = -\frac{16}{3} (x-1) x (2 x-1) (4 x-1), \\ \phi _4(x) = \frac{1}{3} x (2 x-1) (4 x-3) (4 x-1). \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} \psi _{0}(x)|_{I_l}= -\frac{32}{3} x (2 x-1) (4 x-1) (8 x-3), \\ \psi _{1}(x)|_{I_l}= -\frac{32}{3} x (2 x-1) (4 x-1) (8 x-1), \\ \psi _{2}(x)|_{I_r}= \frac{2}{3} (x-1) (4 x-3) (8 x-7) (8 x-5), \\ \psi _{3}(x)|_{I_r}= -\frac{32}{3} (x-1) (2 x-1) (4 x-3) (8 x-7), \\ \psi _{4}(x)|_{I_r}= -\frac{32}{3} (-32) (x-1) (2 x-1) (4 x-3) (8 x-5) \end{array} \end{aligned}$$

1.2.2 \(M=5\)

The interpolation points are

$$\begin{aligned} \tilde{X}_0 = \left\{ 0^+,\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5}, 1^- \right\} , \quad \tilde{X}_1 = \left\{ \frac{1}{10},\frac{3}{10},\left( \frac{1}{2}\right) ^-,\left( \frac{1}{2}\right) ^+,\frac{7}{10},\frac{9}{10} \right\} . \end{aligned}$$

The basis functions in \(\tilde{W}_0^5\) and \(\tilde{W}_1^5\) are

$$\begin{aligned} \begin{array}{ll} \phi _0(x) = -\frac{1}{24} (x-1) (5 x-4) (5 x-3) (5 x-2) (5 x-1), \\ \phi _1(x) = \frac{25}{24} (x-1) x (5 x-4) (5 x-3) (5 x-2), \\ \phi _2(x) = -\frac{25}{12} (x-1) x (5 x-4) (5 x-3) (5 x-1), \\ \phi _3(x) = \frac{25}{12} (x-1) x (5 x-4) (5 x-2) (5 x-1), \\ \phi _4(x) = -\frac{25}{24} (x-1) x (5 x-3) (5 x-2) (5 x-1), \\ \phi _5(x) = \frac{1}{24} x (5 x-4) (5 x-3) (5 x-2) (5 x-1), \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} \psi _{0}(x)|_{I_l}= \frac{25}{3} x (2 x-1) (5 x-2) (5 x-1) (10 x-3), \\ \psi _{1}(x)|_{I_l}= \frac{50}{3} x (2 x-1) (5 x-2) (5 x-1) (10 x-1), \\ \psi _{2}(x)|_{I_r}= \frac{1}{3} x (5 x-2) (5 x-1) (10 x-3) (10 x-1), \\ \psi _{3}(x)|_{I_r}= -\frac{1}{3} (x-1) (5 x-4) (5 x-3) (10 x-9) (10 x-7), \\ \psi _{4}(x)|_{I_r}= -\frac{50}{3} (x-1) (2 x-1) (5 x-4) (5 x-3) (10 x-9), \\ \psi _{5}(x)|_{I_r}= -\frac{25}{3} (x-1) (2 x-1) (5 x-4) (5 x-3) (10 x-7). \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, Y., Guo, W. et al. An Adaptive Multiresolution Interior Penalty Discontinuous Galerkin Method for Wave Equations in Second Order Form. J Sci Comput 85, 13 (2020). https://doi.org/10.1007/s10915-020-01322-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01322-w

Keywords

Navigation