Skip to main content
Log in

Well-Balancing via Flux Globalization: Applications to Shallow Water Equations with Wet/Dry Fronts

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the flux globalization based central-upwind scheme from Cheng et al. (J Sci Comput 80:538–554, 2019) for the Saint-Venant system of shallow water equations. We first show that while the scheme is capable of preserving moving-water equilibria, it fails to preserve much simpler “lake-at-rest” steady states. We then modify the computation of the global flux variable and develop a well-balanced scheme, which can accurately handle both still- and moving-water equilibria. In addition, we extend the flux globalization based central-upwind scheme to the case when “dry” and/or “almost dry” areas are present. To this end, we introduce a hybrid approach: we use the flux globalization based scheme inside the “wet” areas only, while elsewhere we apply the central-upwind scheme from Bollermann et al. (J Sci Comput 56:267–290, 2013), which is designed to accurately capture wet/dry fronts. We illustrate the performance of the proposed schemes on a number of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study and FORTRAN codes developed by the authors and used to obtain all of the presented numerical results are available from the corresponding author upon reasonable request.

References

  1. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MathSciNet  Google Scholar 

  2. Berthon, C., Crestetto, A., Foucher, F.: A well-balanced finite volume scheme for a mixed hyperbolic/parabolic system to model chemotaxis. J. Sci. Comput. 67, 618–643 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bollermann, A., Chen, G., Kurganov, A., Noelle, S.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56, 267–290 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bollermann, A., Noelle, S., Lukáčová-Medvidová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10, 371–404 (2011)

    Article  MathSciNet  Google Scholar 

  5. Caselles, V., Donat, R., Haro, G.: Flux-gradient and source-term balancing for certain high resolution shock-capturing schemes. Comput. Fluids 38, 16–36 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cheng, Y., Chertock, A., Herty, M., Kurganov, A., Wu, T.: A new approach for designing moving-water equilibria preserving schemes for the shallow water equations. J. Sci. Comput. 80, 538–554 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chertock, A., Cui, S., Kurganov, A., Özcan, ŞN., Tadmor, E.: Well-balanced schemes for the Euler equations with gravitation: conservative formulation using global fluxes. J. Comput. Phys. 358, 36–52 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chertock, A., Herty, M., Özcan, Ş. N.: Well-balanced central-upwind schemes for 2 \(\times \) 2 systems of balance laws. In: Theory, Numerics and Applications of Hyperbolic Problems I, vol. 236 of Springer Proceedings in Mathematics & Statistics. Springer, pp. 345–361 (2018)

  9. Chertock, A., Kurganov, A., Liu, Y.: Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients. Numer. Math. 127, 595–639 (2014)

    Article  MathSciNet  Google Scholar 

  10. Donat, R., Martinez-Gavara, A.: Hybrid second order schemes for scalar balance laws. J. Sci. Comput. 48, 52–69 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gascón, L., Corberán, J.M.: Construction of second-order TVD schemes for nonhomogeneous hyperbolic conservation laws. J. Comput. Phys. 172, 261–297 (2001)

    Article  MathSciNet  Google Scholar 

  12. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)

    Book  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  14. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Kurganov, A., Liu, Y., Zeitlin, V.: A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411, 109414 (2020)

    Article  MathSciNet  Google Scholar 

  16. Kurganov, A., Liu, Y., Zeitlin, V.: Thermal vs isothermal rotating shallow water equations: comparison of dynamical processes in two models by simulations with a novel well-balanced central-upwind scheme. Geophys. Astrophys. Fluid Dyn. 115, 125–154 (2021)

    Article  MathSciNet  Google Scholar 

  17. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5, 133–160 (2007)

    Article  MathSciNet  Google Scholar 

  18. Liu, X., Chen, X., Jin, S., Kurganov, A., Yu, H.: Moving-water equilibria preserving partial relaxation scheme for the Saint-Venant system. SIAM J. Sci. Comput. 42, A2206–A2229 (2020)

    Article  MathSciNet  Google Scholar 

  19. Martinez-Gavara, A., Donat, R.: A hybrid second order scheme for shallow water flows. J. Sci. Comput. 48, 241–257 (2011)

    Article  MathSciNet  Google Scholar 

  20. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  Google Scholar 

  21. Ribot, M.: A survey on well-balanced and asymptotic preserving schemes for hyperbolic models for chemotaxis. ESAIM Proc. Surv. 61, 68–92 (2018)

    Article  MathSciNet  Google Scholar 

  22. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput. Phys. 228, 1071–1115 (2009)

    Article  MathSciNet  Google Scholar 

  23. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  Google Scholar 

  24. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

Download references

Funding

The work of A. Chertock was supported in part by NSF Grant DMS-1818684. The work of A. Kurganov was supported in part by NSFC Grants 11771201 and 1201101343, and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongle Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertock, A., Kurganov, A., Liu, X. et al. Well-Balancing via Flux Globalization: Applications to Shallow Water Equations with Wet/Dry Fronts. J Sci Comput 90, 9 (2022). https://doi.org/10.1007/s10915-021-01680-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01680-z

Keywords

Mathematics Subject Classification

Navigation