Skip to main content
Log in

Acoustic Nonlinearity Parameter Due to Microplasticity

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Acoustic nonlinearity (which is quantified in terms of an absolute material parameter, the acoustic nonlinearity parameter, β) can be caused by several sources, one of which is the elastic-plastic deformation of the material. This paper develops a model to quantify the acoustic nonlinearity parameter due to elastic-plastic deformation. This new model is applicable to general anisotropic elastic-plastic materials with existing microplasticity strains due to either monotonic or cyclic loading. As an example, the developed model is applied to calculate the acoustic nonlinearity parameter of a single crystal copper specimen subjected to cyclic fatigue loading. It is found that the acoustic nonlinearity parameter of this specimen increases monotonically with increasing fatigue cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York., 1969).

    Google Scholar 

  2. T. Suzuki, A. Hikata, and C. Elbaum, J. Appl. Phys. 35, pp. 2761 (1964).

    Article  MATH  Google Scholar 

  3. A. Hikata, B. B. Chick, and C. Elbaum, J. Appl. Phys. 36, pp. 229 (1965).

    Article  Google Scholar 

  4. P. B. Nagy, Ultrasonics 36, pp. 375 (1998).

    Article  Google Scholar 

  5. W. L. Morris, O. Buck, and R. V. Inman, J. Appl. Phys. 50, pp. 6737 (1979).

    Article  Google Scholar 

  6. A. V. Granato and K. Lucke, J. Appl. Phys. 27, pp. 583 (1956).

    Article  MATH  Google Scholar 

  7. J. H. Cantrell and W. T. Yost, Philos. Mag. A69, pp. 315 (1994).

    Google Scholar 

  8. J. H. Cantrell, Proc. Roy. Soc. Lond. A 460, pp. 757 (2004).

    Article  MATH  Google Scholar 

  9. J. H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. to appear (2005).

  10. Y.-H. Pao, W. Sachse, and H. Fukuoka, Physical Acoustics (Academic Press, 1984, vol. 17, pp. 61).

  11. L. Malvern, Introduction to the Mechanics of a Continuous Medium. (Prentice-Hall, Inc., Englewood, New Jersey, 1969).

    Google Scholar 

  12. A. E. Green and J. E. Adkins, Large Elastic Deformations, 2nd ed. (Oxford University Press, Oxford, 1970).

    MATH  Google Scholar 

  13. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Pub., Boston, MA., 1987).

    Google Scholar 

  14. M. A. Breazeale and J. Philip, Physical acoustics (1984, vol. 17, pp. 1).

  15. J. H. Cantrell, J. Appl. Phys. 76, pp. 3372 (1994).

    Article  Google Scholar 

  16. A. C. Holt and J. Ford, J. Appl. Phys. 38, pp. 42 (1967).

    Article  Google Scholar 

  17. H. Mughrabi, Mater. Sci. Eng. 33, pp. 207 (1978).

    Article  Google Scholar 

  18. H. Mughrabi, F. Ackerman, and K. Herz, Fatigue Mechanisms, edited by Special Technical Publication (ASTM, Special Technical Publication, Philadelphia, 1979, vol. 675, pp. 69).

    Google Scholar 

  19. S. Suresh, Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Qu, J., Jacobs, L.J. et al. Acoustic Nonlinearity Parameter Due to Microplasticity. J Nondestruct Eval 25, 28–36 (2006). https://doi.org/10.1007/s10921-006-0004-7

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-006-0004-7

Keywords

Navigation