Skip to main content
Log in

Simulation of Acoustic Emission in Planar Carbon Fiber Reinforced Plastic Specimens

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The simulation of acoustic emission waveforms resulting from failure during mechanical loading of carbon fiber reinforced plastic structures is investigated using a finite element simulation approach. For this investigation we focus on the dominant failure mechanisms in fiber reinforced structures consisting of matrix cracking, fiber breakage and fiber-matrix interface failure. To simulate the failure process accurately, we present a new acoustic emission source model that is based on the microscopic source geometry and micromechanical properties of fiber and resin. We demonstrate that based on this microscopic source model these failure mechanisms result in excitation of macroscopic plate waves. The propagation of these plate waves is described using a macroscopic three-dimensional model geometry which includes contributions of reflections from the specimen boundaries. We further present a model of the acoustic emission sensors used in experiments to simulate the influence of aperture effects. To enhance the understanding of correlation between macroscopically detectable acoustic emission signals and microscopic failure mechanisms we simulate the response to different source excitation times, crack surface displacements and displacement directions. The results obtained show good agreement with fundamental assumptions about the crack process reported by various other authors. The simulated acoustic emission signals obtained are compared to experimentally measured waveforms during four-point bending experiments of carbon fiber reinforced plastic structures. The simulated signals of fiber-breakage, matrix-cracking and fiber-matrix interface failure show systematic agreement with the respective experimental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohse, J., Chen, J.: Acoustic emission examination of mode I, mode II and mixed-mode I/II interlaminar fracture of unidirectional fiber-reinforced polymers. J. Acoust. Emiss. 19, 1–10 (2001)

    Google Scholar 

  2. Haselbach, W., Lauke, B.: Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos. Sci. Technol. 63, 2155–2162 (2003)

    Article  Google Scholar 

  3. Ramirez-Jimenez, C.R., Papadakis, N., Reynolds, N., Gan, T.H., Purnell, P., Pharaoh, M.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64, 1819–1827 (2004)

    Article  Google Scholar 

  4. Marec, A., Thomas, J.-H., Guerjouma, R.: Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 22, 1441–1464 (2008)

    Article  Google Scholar 

  5. Li, X., Ramirez, C., Hines, E.L., Leeson, M.S., Purnell, P., Pharaoh, M.: Pattern recognition of fiber-reinforced plastic failure mechanism using computational intelligence techniques. In: Neural Networks, IEEE World Congress on Computational Intelligence, pp. 2340–2345 (2008)

  6. Ohtsu, M., Ono, K.: A generalized theory of acoustic emission and Green’s function in a half space. J. Acoust. Emiss. 3, 27–40 (1984)

    Google Scholar 

  7. Ohtsu, M., Ono, K.: The generalized theory and source representation of acoustic emission. J. Acoust. Emiss. 5, 124–133 (1986)

    Google Scholar 

  8. Green, E.R.: Acoustic emission in composite laminates. J. Nondestruct. Eval. 17(3), 117–127 (1998)

    Article  Google Scholar 

  9. Giordano, M., Condelli, L., Nicolais, L.: Acoustic emission wave propagation in a viscoelastic plate. Compos. Sci. Technol. 59, 1735–1743 (1999)

    Article  Google Scholar 

  10. Green, E.R.: Acoustic emission sources in a cross-ply laminated plate. Compos. Eng. 5, 1453–1469 (1995)

    Article  Google Scholar 

  11. Prosser, W.H., Hamstad, M.A., Gary, J., Gallagher, A.O.: Finite element and plate theory modeling of acoustic emission waveforms. J. Nondestruct. Eval. 18(3), 83–90 (1999)

    Article  Google Scholar 

  12. Wilcox, P.D., Lee, C.K., Scholey, J.J., Friswell, M.I., Wisnom, M.R., Drinkwater, B.W.: Progress towards a forward model of the complete acoustic emission process. Adv. Mater. Res. 13–14, 69–75 (2006)

    Article  Google Scholar 

  13. Scholey, J.J., Wilcox, P.D., Lee, C.K., Friswell, M.I., Wisnom, M.R.: Acoustic emission in wide composite specimens. Adv. Mater. Res. 13–14, 325–332 (2006)

    Article  Google Scholar 

  14. Castaings, M., Bacon, C., Hosten, B., Predoi, M.V.: Finite element predictions for the dynamic response of thermo-viscoelastic material structures. J. Acoust. Soc. Am. 115(3), 1125–1133 (2004)

    Article  Google Scholar 

  15. Nieuwenhuis, J.H., Neumann, J., Greve, D.W., Oppenheim, I.J.: Generation and detection of guided waves using PZT wafer transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2103–2111 (2005)

    Article  Google Scholar 

  16. Greve, D.W., Neumann, J.J., Nieuwenhuis, J.H., Oppenheim, I.J., Tyson, N.L.: Use of Lamb waves to monitor plates: experiments and simulations. Proc. SPIE 5765, 281–292 (2005)

    Article  Google Scholar 

  17. Hosten, B.: Heterogeneous structure of modes and Kramers-Kronig relationship in anisotropic viscoelastic materials. J. Acoust. Soc. Am. 104(3), 1382–1388 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hamstad, M.A., Gallagher, A.O., Gary, J.: A wavelet transform applied to acoustic emission signals: part 1: source identification. J. Acoust. Emiss. 20, 39–61 (2002)

    Google Scholar 

  19. Prosser, W.H.: Advanced AE techniques in composite materials research. J. Acoust. Emiss. 14(3–4), 1–11 (1996)

    Google Scholar 

  20. Comsol, A.B.: COMSOL multiphysics—structural mechanics module. User’s Guide (2008)

  21. Hatano, H., Chaya, T., Watanabe, S., Jinbo, K.: Reciprocity calibration of impulse responses of acoustic emission transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 1221–1228 (1998)

    Article  Google Scholar 

  22. Scruby, C.B., Buttle, D.J.: Quantitative fatigue crack measurement by acoustic emission. In: Marsh, K.J., Smith, R. (eds.) Crack measurement: techniques and applications, p. 207. EMAS, UK (1992)

  23. Freund, L.B.: The initial wave front emitted by a suddenly extending crack in an elastic solid. J. Appl. Mech. 39, 601–602 (1972)

    Google Scholar 

  24. Prosser, W.H., Jackson, K.E., Kellas, S., Smith, B.T., McKeon, J., Friedman, A.: Advanced waveform-based acoustic emission detection of matrix cracking in composites. Mater. Eval. 53(9), 1052–1058 (1995)

    Google Scholar 

  25. Goujon, L., Baboux, J.C.: Behaviour of acoustic emission sensors using broadband calibration techniques. Measur. Sci. Technol. 14, 903–908 (2003)

    Article  Google Scholar 

  26. Ono, K., Cho, H., Matsuo, T.: Transfer functions of acoustic emission sensors. J. Acoust. Emiss. 26, 72–90 (2008)

    Google Scholar 

  27. Scruby, C.B., Wadley, H.N.G.: A calibrated capacitance transducer for the detection of acoustic emission. J. Phys. D Appl. Phys. 11, 1487–1494 (1978)

    Article  Google Scholar 

  28. Keprt, J., Benes, P.: The determination of uncertainty in the calibration of acoustic emission sensors. Int. J. Microstruct. Mater. Prop. 4(1), 85–103 (2009)

    Article  Google Scholar 

  29. Sause, M.G.R., Schultheiß, D., Horn, S.: Acoustic emission investigation of coating fracture and delamination in hybrid carbon fiber reinforced plastic structures. J. Acoust. Emiss. 26, 1–13 (2008)

    Google Scholar 

  30. Sause, M.G.R., Haider, F., Horn, S.: Quantification of metallic coating failure on carbon fiber reinforced plastics using acoustic emission. Surf. Coat. Technol. 204(3), 300–308 (2009)

    Article  Google Scholar 

  31. NOESIS Advanced Acoustic Emission Data Analysis and Pattern Recognition & Neural Networks Software for Acoustic Emission Applications, User’s Manual, Enviroacoustics S.E. (2006)

  32. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. 1, 224–227 (1979)

    Article  Google Scholar 

  33. Tou, J.T.: DYNOC—A dynamic optimal cluster-seeking technique. Int. J. Comput. Inf. Sci. 8(6), 541–547 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. Anastassopoulos, A.A., Philippidis, T.P.: Clustering methodology for the evaluation of acoustic emission from composites. J. Acoust. Emiss. 13, 11–21 (1995)

    Google Scholar 

  35. Sause, M.G.R.: AWARE++ Software manual Rev. 1.0. http://www.physik.uni-augsburg.de/exp2/downloads.de.html (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. R. Sause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sause, M.G.R., Horn, S. Simulation of Acoustic Emission in Planar Carbon Fiber Reinforced Plastic Specimens. J Nondestruct Eval 29, 123–142 (2010). https://doi.org/10.1007/s10921-010-0071-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-010-0071-7

Keywords

Navigation