Skip to main content
Log in

Use of a.c. Magnetic Susceptibility for Temperature Measurement and Discrimination Between Spinodal Decomposition and Sigma Phase Formation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Duplex stainless steels are embrittled on exposure to elevated temperatures because of spinodal decomposition (<550°C) and sigma phase formation (between 600°C and 900°C). The sigma phase has been discovered to undergo a paramagnetic-to-ferromagnetic transition at cryogenic temperatures and its Curie temperature has a good dependence on prior annealing temperature. Additionally, it has been found that the room-temperature a.c. magnetic susceptibility also has a good temperature-dependence when spinodal decomposition occurs. It is viable to use room-temperature a.c. magnetic susceptibility and the cryogenic magnetic transition of the sigma phase for 1. temperature measurement and 2. discrimination between spinodal decomposition and sigma phase formation in duplex stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, K.L., Chen, H.R., Yang, J.R.: The low-temperature aging embrittlement in a 2205 duplex stainless steel. Mater. Sci. Eng. A 379(1–2), 119–132 (2004)

    Google Scholar 

  2. Iacoviello, F., Casari, F., Gialanella, S.: Effect of “475°C embrittlement” on duplex stainless steels localized corrosion resistance. Corros. Sci. 47(4), 909–922 (2005)

    Article  Google Scholar 

  3. Lo, K.H., Shek, C.H., Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng. A R 65(4–6), 39–104 (2009)

    Article  Google Scholar 

  4. Kawaguchi, Y., Yamanaka, S.: Applications of thermoelectric power measurement to deterioration diagnosis of nuclear material and its principle. J. Nondestruct. Eval. 23(2), 65–76 (2004)

    Article  Google Scholar 

  5. David, S.A., Vitek, J.M., Alexander, D.J.: Embrittlement of austenitic stainless steel welds. J. Nondestruct. Eval. 15(3–4), 129–136 (1996)

    Article  Google Scholar 

  6. Tavares, S.S.M., Pardal, J.M., Guerreiro, J.L., Gomes, A.M., De Silva, M.R.: Magnetic detection of sigma phase in duplex stainless steel UNS S31803. J. Magn. Magn. Mater. 322(17), L29–L33 (2010)

    Article  Google Scholar 

  7. Wilms, M.E., Gadgil, V.J., Krougman, J.M., Ijsseling, F.P.: The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel. Corros. Sci. 36(5), 877–881 (1994)

    Article  Google Scholar 

  8. Dominguez-Aguilar, M.A., Newman, R.C.: Detection of deleterious phases in duplex stainless steel by weak galvanostatic polarization in alkaline solution. Corros. Sci. 48(9), 2560–2576 (2006)

    Article  Google Scholar 

  9. McEvilly, A.J.: Metal Failures—Mechanisms, Analysis, Prevention. Wiley, New York (2002)

    Google Scholar 

  10. Ruiz, A., Ortiz, N., Carreon, H., Carlos, R.: Utilization of ultrasonic measurements for determining the variations in microstructure of thermally degraded 2205 duplex stainless steel. J. Nonstruct. Eval. 28(3–4), 131–139 (2009)

    Article  Google Scholar 

  11. Normando, P.G., Moura, E.P., Souza, J.A., Tavares, S.S.M., Padovese, L.R.: Ultrasound, eddy current and magnetic Barkhausen noise as tools for sigma phase detection on a UNS S31803 duplex stainless steel. Mater. Sci. Eng. A 527(12), 2886–2891 (2010)

    Article  Google Scholar 

  12. De Albuquerque, V.H., Silva, E.D.M., Leite, J.P., De Moura, E.P., Freitas, V.L.D.A., Tavares, J.M.R.S.: Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurement. Mater. Des. 31(4), 2147–2150 (2010)

    Article  Google Scholar 

  13. Silva, E.D.M., De Albuquerque, V.H., Leite, J.P., Verla, A.C.G., De Moura, E.P., Tavares, J.M.R.S.: Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing. Mater. Sci. Eng. A 526(1–2), 126–130 (2009)

    Google Scholar 

  14. Yi, Y.S., Shoji, T.: Detection and evaluation of material degradation of thermally aged duplex stainless steels: electrochemical polarization test and AFM surface analysis. J. Nucl. Mater. 231(1–2), 20–28 (1996)

    Article  Google Scholar 

  15. Chandra, K., Singhal, R., Kain, V., Raja, V.S.: Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior. Mater. Sci. Eng. A 527(16–17), 3904–3912 (2010)

    Google Scholar 

  16. Yi, Y.S., Shoji, T.: Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test. J. Nucl. Mater. 240(1), 62–69 (1996)

    Article  Google Scholar 

  17. Maeda, N., Goto, T., Kamimura, T., Naito, T., Kumano, S., Nakao, Y.: Changes in electromagnetic properties during thermal aging of duplex stainless steel. Int. J. Press. Vessel Technol. 71(7), 7–12 (1997)

    Article  Google Scholar 

  18. Goto, T., Naito, T., Yamaoka, T.: A study on NDE of thermal aging of cast duplex stainless steels. Nucl. Eng. Des. 182(2), 181–192 (1998)

    Article  Google Scholar 

  19. Mathew, M.D., Lietzan, L.M., Murty, K.L., Shah, V.N.: Low temperature aging embrittlement of CF-8 stainless steel. Mater. Sci. Eng. A 269(1–2), 186–196 (1999)

    Google Scholar 

  20. Meszaros, I., Szabo, P.J.: Complex magnetic and microstructural investigation of duplex stainless steel. NDT E Int. 38(7), 517–521 (2005)

    Article  Google Scholar 

  21. Mitra, A., Chen, Z.J., Jiles, D.C.: Nondestructive magnetic measurements in weld and base metals of service exposed Cr-Mo steel. NDT E Int. 28(1), 29–33 (1995)

    Article  Google Scholar 

  22. Jiles, D.C.: Review of magnetic methods for nondestructive evaluation. NDT E Int. 21(5), 311–319 (1988)

    Article  Google Scholar 

  23. Rajkumar, K.V., Kumar, A., Jayakumar, T., Raj, B., Ray, K.K.: Comprehensive evaluation of aging behavior in M250 grade maraging steel using nondestructive parameters. Mater. Eval. 68(1), 69–75 (2010)

    Google Scholar 

  24. Yang, G., Tian, G.Y., Que, P.W., Chen, T.L.: Independent component analysis-based feature extraction technique for defect classification applied for pulsed eddy current. J. Nondestruct. Eval. 20(4), 230–245 (2009)

    Article  Google Scholar 

  25. Chung, H.M.: Aging and life prediction of cast duplex stainless steel components. Int. J. Press. Vessel Technol. 50(1–3), 179–213 (1992)

    Article  Google Scholar 

  26. Buttle, D.J., Moorthy, V., Shaw, B.: Determination of residual stress by magnetic methods. National Physical Laboratory (NPL) Measurement Good Practice Guide No. 88 (2006)

  27. Lo, K.H., Mummery, P., Buttle, D.J.: Characterisation of residual principal stresses and their implications on failure of railway rails. Eng. Fail. Anal. 17(6), 1273–1284 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Lo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, K.H. Use of a.c. Magnetic Susceptibility for Temperature Measurement and Discrimination Between Spinodal Decomposition and Sigma Phase Formation. J Nondestruct Eval 30, 41–46 (2011). https://doi.org/10.1007/s10921-010-0088-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-010-0088-y

Keywords

Navigation