Skip to main content
Log in

Microstructural Development of Hydrating Portland Cement Paste at Early Ages Investigated with Non-destructive Methods and Numerical Simulation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Microstructure development of hydrating cement paste at early ages is not only an indicator of the reactivity of cement, but also a factor on the workability of fresh concrete. In this study, the microstructure development of hydrating cement paste at early ages is investigated with non-destructive methods including ultrasound P-wave propagation velocity measurement and non-contact electric resistivity tests, together with conventional needle penetration depth and calorimetry tests. The hydration process and microstructural development of the cement paste is modeled with the three-dimensional computer model CEMHYD3D. Evolution of microstructural parameters including the volumetric fraction of phases and their percolation status are analyzed by using the results of the numerical simulation. Microstructural mechanisms of the two non-destructive techniques (ultrasound pulse propagation and electric resistivity measurements) are discussed. The main findings of this study are that the velocity of ultrasound P-wave propagation in hydrating cement paste is a function of the propagation routes in the material and inter-particle forces. The electric resistivity is controlled by the ionic concentrations in the pore solution during the early hours and later by the connectivity of pores. A model for the development of ultrasound P-wave propagation velocity is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Standard test method for normal consistency of hydraulic cement. ASTM C187-2010

  2. Bentz, D.P.: Three-dimensional computer simulation of Portland cement hydration and microstructure development. J. Am. Ceram. Soc. 80(1), 3 (1997)

    Article  Google Scholar 

  3. Bentz, D.P.: A review of early-age properties of cement-based materials. Cem. Concr. Res. 38(2), 196–204 (2008)

    Article  Google Scholar 

  4. Bentz, D.P.: Critical observations for the evaluation of cement hydration models. Int. J. Adv. Eng. Sci. Appl. Math. 2(3), 75–82 (2010)

    Article  Google Scholar 

  5. Bentz, D.P., Garboczi, E.J.: Percolation of phases in a three-dimensional cement paste microstructural model. Cem. Concr. Res. 21(2–3), 325–344 (1991)

    Article  Google Scholar 

  6. Bentz, D.P., Garboczi, E.J., Haecker, C.J., Jensen, O.M.: Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 29(10), 1663–1671 (1999)

    Article  Google Scholar 

  7. Boivin, S.G.: Early age shrinkage of concrete: development of an experimental method and contribution to the physical analysis of autogenous shrinkage. PhD thesis, Université de soutenance (1999)

  8. Canegallo, S., Apostolo, M., Storti, G., Morbidelli, M.: On-line conversion monitoring through ultrasound propagation velocity measurements in emulsion polymerization. J. Appl. Polym. Sci. 57(11), 1333–1346 (2003)

    Article  Google Scholar 

  9. Chen, W.: Hydration of slag cement: theory, modelling and application. PhD Thesis, University of Twente (2007)

  10. Chen, W., Brouwers, H.J.H.: Mitigating the effects of system resolution on computer simulation of Portland cement hydration. Cem. Concr. Compos. 30, 779–787 (2008)

    Article  Google Scholar 

  11. Chen, W., Brouwers, H.J.H.: Alkali binding in hydrated Portland cement paste. Cem. Concr. Res. 40, 716–722 (2010)

    Article  Google Scholar 

  12. Chen, W., Brouwers, H.J.H.: A method for predicting the alkali concentrations in pore solution of hydrated slag cement paste. J. Mater. Sci. 46(10), 3622–3631 (2011)

    Article  Google Scholar 

  13. Chen, W., Shui, Z., Fan, J.: Time-dependent rheological changes of fly ash blended cement paste. J. Test. Eval. 40(5), 822–832 (2012)

    Google Scholar 

  14. Chung, C.-w.: Ultrasonic wave reflection measurements on stiffening and setting of cement paste. PhD thesis, University of Illinois at Urbana-champaign (2010)

  15. Chung, C.W., Popovics, J.S., Struble, L.J.: Using ultrasonic wave reflection to measure solution properties. Ultrason. Sonochem. 17(1), 266–272 (2010)

    Article  Google Scholar 

  16. de Kretser, R.G., Boger, D.V., Scales, P.J.: Compressive rheology: an overview. In: Annual Rheology Reviews, pp. 125–165 (2003)

    Google Scholar 

  17. Feylessoufi, A., Tenoudji, F.C., Morin, V., Richard, P.: Early ages shrinkage mechanisms of ultra-high-performance cement-based materials. Cem. Concr. Res. 31(11), 1573–1579 (2001)

    Article  Google Scholar 

  18. Garboczi, E.J., Bentz, D.P.: Modelling of the microstructure and transport properties of concrete. Constr. Build. Mater. 10(5), 293–300 (1996)

    Article  Google Scholar 

  19. Garboczi, E.J., Bentz, D.P.: The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cem. Concr. Res. 31(10), 1501–1514 (2001)

    Article  Google Scholar 

  20. Hanehara, S., Yamada, K.: Rheology and early age properties of cement systems. Cem. Concr. Res. 38(2), 175–195 (2008)

    Article  Google Scholar 

  21. He, Z., Li, Z.: Non-contact resistivity measurement for characterisation of the hydration process of cement-paste with excess alkali. Adv. Cem. Res. 16(1), 29–34 (2004)

    Article  Google Scholar 

  22. Kažys, R., Rekuvienė, R.: Viscosity and density measurement methods for polymer melts. Ultragarsas (Ultrasound) 66, 20–25 (2011)

    Google Scholar 

  23. Keating, J., Hannant, D.J., Hibbert, A.P.: Correlation between cube strength, ultrasonic pulse velocity and volume change for oil well cement slurries. Cem. Concr. Res. 19(5), 715–726 (1989)

    Article  Google Scholar 

  24. Kmack, R.M., Kurtis, K.E., Jacobs, L.J., Kim, J.-Y.: Assessment of air entrainment in fresh cement paste using ultrasonic nondestructive testing. In: Recent advancement in concrete freezing-thawing (F-T) Durability. Journal of ASTM International Selected Technical Papers STP1511. ASTM, West Conshohocken, U.S., Kejin Wang (editor), reprinted from Journal of ASTM International 2010, Vol. 7, Issue 1

  25. Lee, H.K., Lee, K.M., Kim, Y.H., Yim, H., Bae, D.B.: Ultrasonic in-situ monitoring of setting process of high-performance concrete. Cem. Concr. Res. 34(4), 631–640 (2004)

    Article  Google Scholar 

  26. Li, Z., Li, W.: Non-contacting method for resistivity measurement of concrete specimen. US Patent (US 6639401) (2003)

  27. Li, Z.J., Wei, X.S.: The electric resistivity of cement paste incorporated with retarder. J. Wuhan Univ. Technol., Mater. Sci. Edn. 18(3), 76–78 (2003)

    Article  Google Scholar 

  28. Li, Z.J., Xiao, L.Z., Wei, X.S.: Determination of concrete setting time using electric resistivity measurement. J. Mater. Civ. Eng. 19(5), 423–427 (2007)

    Article  Google Scholar 

  29. Lootens, D., Jousset, P., Martinie, L., Roussel, N., Flatt, R.J.: Yield stress during setting of cement pastes from penetration tests. Cem. Concr. Res. 39(5), 401–408 (2009)

    Article  Google Scholar 

  30. Mao, L.Z., Li, Z.: Early-age hydration of fresh concrete monitored by non-contact electric resistivity measurement. Cem. Concr. Res. 38(3), 312–319 (2008)

    Article  MathSciNet  Google Scholar 

  31. Parrott, L.J., Geiker, M., Gutteridge, W.A., Killoh, D.: Monitoring Portland cement hydration: comparison of methods. Cem. Concr. Res. 20(6), 919–926 (1990)

    Article  Google Scholar 

  32. Powers, T.C.: The nonevaporable water content of hardened Portland-cement paste—its significance for concrete research and its method of determination. ASTM Bull. 158, 68–76 (1949)

    Google Scholar 

  33. Reinhardt, H.W., Grosse, C.U.: Continuous monitoring of setting and hardening of mortar and concrete. Constr. Build. Mater. 18(3), 145–154 (2004)

    Article  Google Scholar 

  34. Robeyst, N., Gruyaert, E., Grosse, C.U., De Belie, N.: Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem. Concr. Res. 38(10), 1169–1176 (2008)

    Article  Google Scholar 

  35. Sayers, C.M., Grenfell, R.L.: Ultrasonic propagation through hydrating cements. Ultrasonics 31(3), 147–153 (1993)

    Article  Google Scholar 

  36. Sayers, C.M., Dahlin, A.: Propagation of ultrasound through hydrating cement pastes at early times. Adv. Cem. Based Mater. 1(1), 12–21 (1993)

    Article  Google Scholar 

  37. Sun, Z.H., Voigt, T., Shah, S.P.: Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes. Cem. Concr. Res. 36(2), 278–287 (2006)

    Article  Google Scholar 

  38. van Breugel, K.: Modelling of cement-based systems–the alchemy of cement chemistry. Cem. Concr. Res. 34(9), 1661–1668 (2004)

    Article  Google Scholar 

  39. Venkiteela, G., Sun, Z.H., Shah, S.P.: Observation of cement paste microstructure evolution. Transp. Res. Rec. 2141, 75–81 (2010)

    Article  Google Scholar 

  40. Wei, X., Tian, K., Xiao, L.: Prediction of compressive strength of Portland cement paste based on electric resistivity measurement. Adv. Cem. Res. 22(3), 165–170 (2010)

    Article  Google Scholar 

  41. Winslow, D.N., Cohen, M.D., Bentz, D.P., Snyder, K.A., Garboczi, E.J.: Percolation and pore structure in mortars and concrete. Cem. Concr. Res. 24(1), 25–37 (1994)

    Article  Google Scholar 

  42. Xiao, L., Li, Z.: Early-age hydration of fresh concrete monitored by non-contact electric resistivity measurement. Cem. Concr. Res. 38(3), 312–319 (2008)

    Article  Google Scholar 

  43. Ye, G.: The microstructure and permeability of cementitious materials. PhD thesis, Technical University of Delft (2003)

  44. Ye, G., Lura, P., van Breugel, K., Fraaij, A.L.A.: Study on the development of the microstructure in cement-based materials by means of numerical simulation and ultrasonic pulse velocity measurement. Cem. Concr. Compos. 26(5), 491–497 (2004)

    Article  Google Scholar 

  45. Zhang, J., Qin, L., Li, Z.J.: Hydration monitoring of cement-based materials with resistivity and ultrasonic methods. Mater. Struct. 42(1), 15–24 (2009)

    Article  Google Scholar 

  46. Zhu, J., Kee, S.-H., Han, D., Tsai, Y.-T.: Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cem. Concr. Res. 41(8), 872–881 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This research is financially supported by the National Basic Research Program (973) of China (Project 2009CB623200) and the Youth Chenguang Project of Science and Technology of Wuhan (project 201150431086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Li, Y., Shen, P. et al. Microstructural Development of Hydrating Portland Cement Paste at Early Ages Investigated with Non-destructive Methods and Numerical Simulation. J Nondestruct Eval 32, 228–237 (2013). https://doi.org/10.1007/s10921-013-0175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0175-y

Keywords

Navigation