Skip to main content
Log in

Evaluation of Railroad Wheel Steel with Lamellar Duplex Microstructures Using Diffuse Ultrasonic Backscatter

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The effects of lamellar duplex microstructure within grains that contain alternating phases of cementite and ferrite on ultrasonic scattering in railroad wheel steel are evaluated using a diffuse ultrasonic backscatter technique. A new singly scattered response (SSR) model that considers the lamellar duplex microstructure within grains is developed based on a previous SSR model. The results show that the amplitude of ultrasonic scattering decreases with decreasing lamellar space. Corresponding experiments are performed with 10 MHz and 15 MHz focused transducers by scanning both unquenched and quenched wheels. The experimental results show that the ultrasonic scattering amplitudes drop dramatically near the quenched tread surface, a result which is attributed to the creation of duplex microstructure (pearlite phase) within grains due to the quenching process. The lamellar spacing within grains increases progressively from the tread surface to the deeper locations due to the non-uniform cooling rate. The distribution of lamellar spacing within grains as a function of depth is quantified with the modified SSR model. Good agreement with optical microscopy is observed. The diffuse ultrasonic backscatter technique exhibits strong sensitivity to microstructure changes, an outcome that may be applicable for quality control during manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghoshal, G., Turner, J.A., Weaver, R.L.: Wigner distribution of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids. J. Acoust. Soc. Am. 122, 2009–2021 (2007)

    Article  Google Scholar 

  2. Thompson, R.B., Margetan, F., Haldipur, P., Yu, L., Li, A., Panetta, P., Wasan, H.: Scattering of elastic waves in simple and complex polycrystals. Wave Motion 45, 655–674 (2008)

    Article  MATH  Google Scholar 

  3. Mamou, J., Oelze, M.L., O’Brien, W.D. Jr, Zachary, J.F.: Identifying ultrasonic scattering sites from three-dimensional and complex polycrystals. J. Acoust. Soc. Am. 117, 413–423 (2005)

    Article  Google Scholar 

  4. Thompson, R.B., Gray, T.A.: A model relating ultrasonic scattering measurement through liquid–solid interfaces to unbounded medium scattering amplitudes. J. Acoust. Soc. Am. 74, 1279–1290 (1983)

    Article  Google Scholar 

  5. Weaver, R.L.: Diffusivity of ultrasound in polycrystals. J. Mech. Phys. Solids 38, 55–86 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Papadakis, E.P.: Ultrasonic attenuation caused by scattering in polycrystalline media. In: Mason, W. (ed.) Physical Acoustics, vol. IV, Part B, pp. 269–328. Academic Press, New York (1968)

    Google Scholar 

  7. Merkulov, L.G.: Investigation of ultrasonic scattering in metals. Sov. Phys. Tech. Phys. 26, 59–69 (1956)

    Google Scholar 

  8. Hirsekorn, S.: The scattering of ultrasonic waves by polycrystals. J. Acoust. Soc. Am. 72, 1021–1031 (1982)

    Article  MATH  Google Scholar 

  9. Hirsekorn, S.: The scattering of ultrasonic waves by polycrystals, II. Shear waves. J. Acoust. Soc. Am. 73, 1160–1163 (1982)

    Article  Google Scholar 

  10. Stanke, F.E., Kino, G.S.: A unified theory for elastic wave propagation in polycrystalline materials. J. Acoust. Soc. Am. 75, 665–681 (1984)

    Article  MATH  Google Scholar 

  11. Ahmed, S., Thompson, R.B.: Attenuation of ultrasonic waves in cubic metals having elongated, oriented grains. Nondestruct. Test. Eval. 8–9, 525–531 (1992)

    Article  Google Scholar 

  12. Rokhlin, S.I., Bolland, T.K., Adler, L.: High frequency ultrasonic wave propagation in polycrystalline materials. J. Acoust. Soc. Am. 91, 151–165 (1992)

    Article  Google Scholar 

  13. Yang, L., Lobkis, O.I., Rokhlin, S.I.: Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials. Ultrasonics 51, 697–708 (2011)

    Article  Google Scholar 

  14. Ghoshal, G., Turner, J.A.: Diffuse ultrasonic backscatter at normal incidence through a curved interface. J. Acoust. Soc. Am. 128, 3449–3458 (2010)

    Article  Google Scholar 

  15. Rose, J.H.: Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 10, pp. 1715–1720. Plenum, New York (1991)

    Google Scholar 

  16. Rose, J.H.: Ultrasonic backscatter from microstructure. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in QNDE, vol. 11, pp. 1677–1684. Plenum, New York (1992)

    Google Scholar 

  17. Han, Y.K., Thompson, R.B.: Ultrasonic backscattering in duplex microstructures: theory and application to titanium alloys. Metall. Mater. Trans. A 28A, 91–104 (1997)

    Article  Google Scholar 

  18. Lobkis, O.I., Yang, L., Li, J., Rokhlin, S.I.: Ultrasonic backscattering in polycrystals with elongated single phase and duplex microstructures. Ultrasonics 52, 694–705 (2012)

    Article  Google Scholar 

  19. Lobkis, O.I., Rokhlin, S.I.: Characterization of polycrystals with elongated duplex microstructure by inversion of ultrasonic backscattering data. Appl. Phys. Lett. 96, 161905 (2010)

    Article  Google Scholar 

  20. Yang, L., Li, J., Lobkis, O.I., Rokhlin, S.I.: Ultrasonic propagation and scattering in duplex microstructures with application to titanium alloys. J. Nondestruct. Eval. 31, 270–283 (2012)

    Article  Google Scholar 

  21. Rodgers, P.H., Van Buren, A.L.: An exact expression for the Lommel diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  Google Scholar 

  22. Schmerr, L.W., Song, S.J.: Ultrasonic Nondestructive Evaluation System. Springer, New York (2007). Chaps. 5, 6, and 8

    Book  Google Scholar 

  23. Schmerr, L.W.: A multigaussian ultrasonic beam model for high performance simulation on a personal computer. Mater. Eval. 58, 882–888 (2000)

    Google Scholar 

  24. Schmerr, L.W.: Fundamentals of Ultrasonic Nondestructive Evaluation, a Modeling Approach. Plenum, New York (1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Lonsdale, C., Oliver, J. et al. Evaluation of Railroad Wheel Steel with Lamellar Duplex Microstructures Using Diffuse Ultrasonic Backscatter. J Nondestruct Eval 32, 331–340 (2013). https://doi.org/10.1007/s10921-013-0186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0186-8

Keywords

Navigation