Skip to main content
Log in

Moisture Distribution in Partially Saturated Concrete Studied by Impedance Spectroscopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The moisture content and its spatial distribution has a great influence on the durability properties of concrete structures. Several non-destructive techniques have been used for the determination of the total water content, but moisture distribution is difficult to determine. In this paper impedance spectroscopy is used to study the water distribution in concrete samples with controlled and homogeneously distributed moisture contents. The technique is suitable for the determination of water distribution inside the sample, using the appropriate equivalent circuits. It is shown that using the selected drying procedures there is no change in the solid phase of the samples, although the technique can only be used for the qualitative study of variations in the solid phase when samples are too thick. The results of this work show that for a wide range of concrete percentages of saturation, from full to 18 % saturation, practically all the pores keep at least a thin layer of electrolyte covering their walls, since the capacitance measurement results are practically independent of the saturation degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cyr, M., Rivard, P., Labrecque, F.: Reduction of ASR-expansion using powders ground from various sources of reactive aggregates. Cem. Concr. Compos. 31, 438–446 (2009)

    Article  Google Scholar 

  2. De Oliveira, M.B., Vazquez, E.: The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Waste Manag. 16(1–3), 113–117 (1996)

    Article  Google Scholar 

  3. López, W., Gonzalez, J.A.: Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cem. Concr. Res. 23, 368–376 (1993)

    Article  Google Scholar 

  4. Giarma, C.: Estimation of carbonation depth based on hygrothermal calculations. ACI Mater. J. 108(2), 209–218 (2011)

    Google Scholar 

  5. Climent, M.A., de Vera, G., López, J.F., Viqueira, E., Andrade, C.: A test method for measuring chloride diffusion coefficients through nonsaturated concrete. Part I: the instantaneous plane source diffusion case. Cem. Concr. Res. 32, 1113–1123 (2002)

    Article  Google Scholar 

  6. de Vera, G., Climent, M.A., Viqueira, E., Antón, C., Andrade, C.C.: A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II: the instantaneous plane source diffusion case with chloride binding consideration. Cem. Concr. Res. 37(5), 714–724 (2007)

    Article  Google Scholar 

  7. Guimarães, A.T.C., Climent, M.A., de Vera, G., Vicente, F.J., Rodrigues, F.T., Andrade, C.: Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure. Constr. Build. Mater. 25(2), 785–790 (2011)

    Article  Google Scholar 

  8. Rucker-Gramm, P., Beddoe, R.E.: Effect of moisture content of concrete on water uptake. Cem. Concr. Res. 40, 102–108 (2010)

    Article  Google Scholar 

  9. Parrott, L.: A review of methods to determine the moisture conditions in concrete. In: Kropp, J., Hilsdorf, H.K. (eds.) Performance Criteria for Concrete Durability, pp. 294–321. E&FN Spon, London (1995)

    Google Scholar 

  10. Klysz, G., Balayssac, J.P., Laurens, S.: Spectral analysis of radar surface waves for non-destructive evaluation of cover concrete. Nondestruct. Test. Eval. Int. 34, 221–227 (2004)

    Google Scholar 

  11. Laurens, S., Balayssac, J.P., Rhazi, J., Klysz, G., Arliguie, G.: Non-destructive evaluation of concrete moisture by GPR: experimental study and direct modeling. Mater. Struct. 38(283), 827–832 (2005)

    Article  Google Scholar 

  12. Larsen, C.K., Sellevold, E.J., Askeland, F., Østvik, J.M., Vennesland, Ø.: Electrical resistivity of concrete part II: influence of moisture content and temperature. In: 2nd Int. Symposium on Advances in Concrete Through Science and Engineering, Canada (2006)

    Google Scholar 

  13. Andrade, M.C., Bolzoni, F., Fullea, J.: Analysis of the relation between water and resistivity isotherms in concrete. Mater. Corros. 62(2), 130–138 (2011)

    Article  Google Scholar 

  14. Carr-Brion, K.: Moisture Sensors in Process Control, p. 122. Elsevier, Amsterdam (1986)

    Google Scholar 

  15. Sbartaï, Z.M., Laurens, S., Balayssac, J.-P., Ballivy, G., Arliguie, G.: Effect of concrete moisture on radar signal amplitude. ACI Mater. J. 103(6), 419–426 (2006)

    Google Scholar 

  16. Schmugge, T.J., Jackson, T.J., McKim, H.L.: Survey of methods for soil moisture determination. Water Resour. Res. 16(6), 961–979 (1980)

    Article  Google Scholar 

  17. Cornell, J.B., Coote, A.T.: The application of an infrared absorption technique to the measurement of moisture content of building materials. J. Appl. Chem. Biotechnol. 22, 455–463 (1972)

    Article  Google Scholar 

  18. Castellote, M., Alonso, C., Andrade, C., Turrillas, X., Campo, J.: Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cem. Concr. Res. 34, 1633–1644 (2004)

    Article  Google Scholar 

  19. Baroghel-Bouny, V., Kinomura, K., Thiery, M., Moscardelli, S.: Easy assessment of durability indicators for service life prediction or quality control of concretes with high volumes of supplementary cementitious materials. Cem. Concr. Compos. 33(8), 832–847 (2011)

    Article  Google Scholar 

  20. Cabeza, M., Merino, P., Miranda, A., Novoa, X.R., Sanchez, I.: Impedance spectroscopy study of hardened Portland cement paste. Cem. Concr. Res. 32, 881–891 (2002)

    Article  Google Scholar 

  21. Sánchez, I., Nóvoa, X.R., de Vera, G., Climent, M.A.: Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy. Microstructural modifications in Portland cement concrete due to forced ionic migration tests. study by impedance spectroscopy. Cem. Concr. Res. 38(7), 1015–1025 (2008)

    Article  Google Scholar 

  22. Sanchez, I., Lopez, M.P., Ortega, J.M., Climent, M.A.: Impedance spectroscopy: an efficient tool to determine the non steady state diffusion coefficient in building materials. Mater. Corros. 62(2), 139–145 (2011)

    Article  Google Scholar 

  23. Sánchez, I., Sánchez, M., Climent, M.A., Alonso, C.: Impedance spectroscopy to characterise microstructural changes in liquid and solid phases of mortars exposed to high temperature. In: 2nd International RILEM Workshop on Concrete Spalling Due to Fire Exposure, pp. 43–51 (2011)

    Google Scholar 

  24. Cabeza, M., Merino, P., Novoa, X.R., Sanchez, I.: Electrical effects generated by mechanical loading of hardened Portland cement paste. Cem. Concr. Compos. 25, 351–356 (2003)

    Article  Google Scholar 

  25. Barsoukov, E., McDonald, J.R.: Impedance Spectroscopy. Theory, Experiments, and Applications, 2nd edn. Willey-Interscience, New York (2005)

    Book  Google Scholar 

  26. Christensen, B.J., Coverdale, R.T., Olson, R.A., Ford, S.J., Garboczi, E.J., Jennings, H.M., Mason, T.O.: Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation and application. J. Am. Ceram. Soc. 77, 2789–2804 (1994)

    Article  Google Scholar 

  27. Coverdale, R.T., Christensen, B.J., Mason, T.O., Jennings, H.M., Garboczi, E.J.: Interpretation of the impedance spectroscopy of cement paste via computer modelling: part II. Dielectric response. J. Mater. Sci. 29, 4984–4992 (1994)

    Article  Google Scholar 

  28. Keddam, M., Takenouti, H., Nóvoa, X.R., Andrade, C., Alonso, C.: Impedance measurements on cement paste. Cem. Concr. Res. 27, 1191–1201 (1997)

    Article  Google Scholar 

  29. Andrade, C., Blanco, V.M., Collazo, A., Keddam, M., Nóvoa, X.R., Takenouti, H.: Cement paste hardening process studied by impedance spectroscopy. Electrochim. Acta 44, 4313–4318 (1999)

    Article  Google Scholar 

  30. Cabeza, M., Keddam, M., Nóvoa, X.R., Sánchez, I., Takenouti, H.: Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochim. Acta 51, 1831–1841 (2006)

    Article  Google Scholar 

  31. Antón, C., Climent, M.A., de Vera, G., Sánchez, I., Andrade, C.: An improved procedure for obtaining and maintaining well characterized partial water saturation states on concrete samples to be used for mass transport tests. Mater. Struct. (2012). doi:10.1617/s11527-012-9981-4

  32. Safiuddin, Md., Hearn, N.: Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete. Cem. Concr. Res. 35, 1008–1013 (2005)

    Article  Google Scholar 

  33. RILEM TC 116-PCD: Permeability of Concrete as a criterion of its durability. Preconditioning of concrete test specimens for the measurement of gas permeability and capillary absorption of water. Mater. Struct. 32(3), 174-179 (1999)

  34. ASTM Standard C 1202-97. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Annual book of ASTM standard Sect. 4, Vol. 04.02 (2000)

  35. Parrott, L.J.: Moisture conditioning and transport properties of concrete test specimens. Mater. Struct. 27(8), 460–468 (1994)

    Article  Google Scholar 

  36. Deutsche norm Din50 008 Part 1. Atmospheres and their technical application; standard atmospheres over aqueous solutions; saturated salt solutions, glycerol solutions

  37. Diamond, S.: Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525 (2000)

    Article  Google Scholar 

  38. Pedeferrri, P., Bertolini, L.: La Durabilità del Calcestruzzo Armato, p. 27. McGraw-Hill, New York (2000)

    Google Scholar 

  39. Parmon, V.N.: Derivation of the classical Kelvin (Thomson) formula for equilibrium saturated vapor pressure over a drop of a liquid. Russ. J. Phys. Chem. A 73(1), 7–11 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Spanish “Ministerio de Economía y Competitividad” (formerly the “Ministerio de Ciencia e Innovación”) for their financial support through projects BIA 2010-20548 and BIA 2011-25721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, I., Antón, C., de Vera, G. et al. Moisture Distribution in Partially Saturated Concrete Studied by Impedance Spectroscopy. J Nondestruct Eval 32, 362–371 (2013). https://doi.org/10.1007/s10921-013-0190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0190-z

Keywords

Navigation