Skip to main content
Log in

Damage Localization in Plates Using Mode Conversion Characteristics of Ultrasonic Guided Waves

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The present study provides a concise description of wave propagation in cellular sandwich panels. A novel approach of damage detection based on mode conversion is proposed which can be useful for detecting relatively small damages in cellular sandwich structures using high frequency guided waves. The new methodology applies the continuous wavelet transform (CWT) and the cosine formula to extract the damage location from the time signal of displacements. Experiments conducted on a honeycomb and a metallic hollow sphere sandwich plate highlight the feasibility of the novel technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  2. Ahmad, Z.A.B.: Numerical Simulations of Lamb Waves in Plates Using a Semi-Analytical Finite Element Method. Fortschritt-Berichte VDI-Verlag, Düsseldorf (2011)

    Google Scholar 

  3. Ahmad, Z.A.B., Gabbert, U.: Simulation of Lamb wave reflections at plate edges using the semi-analytical finite element method. Ultrasonics 7, 815–820 (2012)

    Article  Google Scholar 

  4. Basri, R., Chiu, W.: Numerical analysis on the interaction of guided Lamb waves with a local elastic stiffness reduction in quasi-isotropic composite plate structures. Compos. Struct. 66, 87–99 (2004)

    Article  Google Scholar 

  5. Benmeddour, F., Grondel, S., Assaad, J., Moulin, E.: Study of the fundamental Lamb modes interaction with asymmetrical discontinuities. Nondestruct. Test. Eval. Int. 41, 330–340 (2008)

    Google Scholar 

  6. Bourasseau, N., Moulin, E., Delebarre, C., Bonniau, P.: Radome health monitoring with Lamb waves: experimental approach. Nondestruct. Test. Eval. Int. 33, 393–400 (2000)

    Google Scholar 

  7. Cegla, F.B., Veidt, M.: Prediction and direct measurement of scattered platewave fields using S 0 to A 0 mode conversion at nonsymmetric circular inhomogeneities. In: AIP Conf. Proc., vol. 894, pp. 63–70 (2007)

    Chapter  Google Scholar 

  8. Cho, Y.: Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 591–603 (2000)

    Article  Google Scholar 

  9. Diligent, O.: Interaction between fundamental Lamb modes and defects in plates. Ph.D. thesis, Imperial college London (2003)

  10. Fiedler, T.: Numerical and Experimental Investigation of Hollow Sphere Structures in Sandwich Panels. Trans Tech Publications (2008)

  11. Flynn, E.B., Todd, M.D., Wilcox, P.D., Drinkwater, B.W., Croxford, A.J.: Maximum-likelihood estimation of damage location in guided-wave structural health monitoring. In: Proc. R. Soc. A (2011)

    Google Scholar 

  12. Giurgiutiu, V.: Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J. Intell. Mater. Syst. Struct. 16, 291–305 (2005)

    Article  Google Scholar 

  13. Giurgiutiu, V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press (Elsevier), San Diego (Amsterdam) (2008). ISBN-13: 978-0-12-088760-6

    Google Scholar 

  14. Hosseini, S.M.H., Gabbert, U.: Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: a parametric study. Compos. Struct. 97, 189–201 (2012)

    Article  Google Scholar 

  15. Hosseini, S.M.H., Öchsner, A., Merkel, M., Fiedler, T.: Current trends in chemical engineering, chap. In: Predicting the Effective Thermal Conductivity of Perforated Hollow Sphere Structures (PHSS). Studium Press LLC, pp. 131–151 (2010). ISBN: 1933699752

    Google Scholar 

  16. Hosseini, S.M.H., Öchsner, A., Fiedler, T.: Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern. Finite Elem. Anal. Des. 47, 804–811 (2011)

    Article  Google Scholar 

  17. Hosseini, S.M.H., Kharaghani, A., Kirsch, C., Gabbert, U.: Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: a parametric study. Compos. Struct. 97, 387–400 (2012)

    Article  Google Scholar 

  18. Hou, Z., Noori, M., Arnand, R.S.: Wavelet based approach for structural damage detection. J. Eng. Mech. 126, 677–683 (2000)

    Article  Google Scholar 

  19. Köhler, B.: Dispersion relations in plate structures studied with a scanning laser vibrometer. In: ECNDT, Berlin (2006)

    Google Scholar 

  20. Kotte, O.: Application of image processing techniques for Lamb wave characterization. Master’s thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology (2004)

  21. Lemistre, M., Balageas, D.: Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Mater. Struct. 10, 504–511 (2001)

    Article  Google Scholar 

  22. Lim, T., Smith, B., McDowell, D.: Behavior of a random hollow sphere metal foam. Acta Mech. 50, 2867–2879 (2002)

    Google Scholar 

  23. Liu, C.L.: A tutorial of the wavelet transform. Technical report, Department of electrical engineering, National Taiwan university (2010)

  24. Michaels, T.E., Michaels, J.E., Ruzzene, M.: Frequency-wave-number domain analysis of guided wavefields. Ultrasonics 51, 452–466 (2011)

    Article  Google Scholar 

  25. Mirahmadi, S.J., Honarvar, F.: Application of signal processing techniques to ultrasonic testing of plates by S 0 Lamb wave mode. Nondestruct. Test. Eval. Int. 44, 131–137 (2011)

    Google Scholar 

  26. Mustapha, S., Ye, L., Wang, D., Lu, Y.: Assessment of debonding in sandwich CF/EP composite beams using A 0 Lamb. Compos. Struct. 93, 483–491 (2011)

    Article  Google Scholar 

  27. Pavlopoulou, S., Soutis, C., Manson, G.: Non-destructive inspection of adhesively bonded patch repairs using Lamb waves. Plast. Rubber Compos. 41(2), 61–68 (2012)

    Article  Google Scholar 

  28. Pavlopoulou, S., Soutis, C., Staszewski, W.J.: Cure monitoring through time-frequency analysis of guided ultrasonic waves. Plast. Rubber Compos. 41(4), 180–186 (2012)

    Article  Google Scholar 

  29. Pohl, J., Willberg, C., Gabbert, U., Mook, G.: Theoretical analysis and experimental determination of the dynamic behaviour of piezoceramic actuators for SHM. Exp. Mech. 51(4), 429–438 (2012)

    Article  Google Scholar 

  30. Rathod, V., RoyMahapatra, D.: Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using acircul ararray of piezoelectric transducers. Nondestruct. Test. Eval. Int. 44, 628–636 (2011)

    Google Scholar 

  31. Ruzzene, M.: Frequency-wave-number domain filtering for improved damage visualization. Smart Mater. Struct. 16, 2116–2129 (2007)

    Article  Google Scholar 

  32. Silva, M., Gibson, L.: The effects of non-periodic microstructure and defects on the compressive strength of the two-dimensional cellular solids. Int. J. Mech. Sci. 39, 549–563 (1997)

    Article  MATH  Google Scholar 

  33. Singh, D., Castaings, M., Bacon, C.: Sizing strip-like defects in plates using guided waves. Nondestruct. Test. Eval. Int. 44, 394–404 (2011)

    Google Scholar 

  34. Sohn, H., Dutta, D., Yang, J.Y., DeSimio, M., Olson, S., Swenson, E.: Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Mater. Struct. 20(4), 45,017–45,027 (2011)

    Article  Google Scholar 

  35. Sohn, H., Dutta, D., Yang, J., Park, H., DeSimio, M., Olson, S., Swenson, E.: Delamination detection in composites through guided wave field image processing. Compos. Sci. Technol. 71, 1250–1256 (2011)

    Article  Google Scholar 

  36. Song, F., Huang, G., Kim, J., Haran, S.: On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system. Smart Mater. Struct. 17, 55,024–55,032 (2008)

    Article  Google Scholar 

  37. Song, F., Huang, G.L., Hudson, K.: Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system. Smart Mater. Struct. 18, 125,007–125,015 (2009)

    Article  Google Scholar 

  38. Swartz, R.A., Flynn, E., Backman, D., Hundhausen, R.J., Park, G.: Active piezoelectric sensing for damage identification in honeycomb aluminum panels. Technical report, Engineering Sciences and Applications, Engineering Institute, MS T001, Los Alamos National Laboratory, Los Alamos, NM 87545 (2006)

  39. Thwaites, S., Clarck, N.H.: Non-destructive testing of honeycomb sandwich structures using elastic waves. J. Sound Vib. 187(2), 253–269 (1995)

    Article  Google Scholar 

  40. Ungethuem, A., Lammering, R.: Impact and damage localization on carbon-fibre-reinforced plastic plates. In: Casciati, F., Giordano, M. (eds.) Proceedings 5th European Workshop on Structural Health Monitoring, Sorrento, Italy (2010)

    Google Scholar 

  41. Weber, R., Hosseini, S.M.H., Gabbert, U.: Numerical simulation of the guided Lamb wave propagation in particle reinforced composites. Compos. Struct. 94(10), 3064–3071 (2012)

    Article  Google Scholar 

  42. Willberg, C., Koch, S., Mook, G., Pohl, J., Gabbert, U.: Continuous mode conversion of Lamb waves in CFRP plates. Smart Mater. Struct. 21, 75,022–75,031 (2012)

    Article  Google Scholar 

  43. Willberg, C., Mook, G., Gabbert, U., Pohl, J.: The phenomenon of continuous mode conversion of Lamb waves in CFRP plates. Key Eng. Mater. 518, 364–374 (2012)

    Article  Google Scholar 

  44. Woo, L.: Digital signal processing eee305 & eee801 (“part a”): Describing random sequences. Technical report, University of Newcastle upon Tyne (2013)

  45. Wu, E., Jiang, W.: Crush of honeycombs contact and impact loads. In: The 10th International Conference on Composite Materials (1995)

    Google Scholar 

  46. Wu, E., Jiang, S.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19, 439–456 (1997)

    Article  Google Scholar 

  47. Yu, L., Bottai-Santoni, G., Giurgiutiu, V.: Shear lag solution for tuning ultrasonic piezoelectric wafer active sensors with applications to Lamb wave array imaging. Int. J. Eng. Sci. 48, 848–861 (2010)

    Article  Google Scholar 

  48. Zhongqing, S., Lin, Y., Ye, L.: Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295(3–5), 753–780 (2006)

    Google Scholar 

Download references

Acknowledgements

By means of this, the authors acknowledge the German Research Foundation for the financial support (GA 480/13-3). We would also like to thank Dr.-Ing. C. Willberg and Dr.-Ing. S. Ringwelski for their invaluable help in the execution of the experimental tests and Hollomet GmbH is also highly appreciated for providing the hollow sphere sandwich panel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. H. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.M.H., Duczek, S. & Gabbert, U. Damage Localization in Plates Using Mode Conversion Characteristics of Ultrasonic Guided Waves. J Nondestruct Eval 33, 152–165 (2014). https://doi.org/10.1007/s10921-013-0211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-013-0211-y

Keywords

Navigation