Skip to main content
Log in

Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, the effect of local defect resonance (LDR) on the nonlinear ultrasonic responses of defects is studied and applied for enhancement of sensitivity of nonlinear NDE. Unlike the resonance of the whole specimen, the LDR provides an efficient energy pumping from the wave directly to the defect and causes an efficient generation of the higher harmonics and wave mixing even at moderate input signals. At higher levels of excitation, a combined effect of LDR and nonlinearity results in qualitatively new “nonclassical” features characteristic of the nonlinear and parametric resonances. The resonant nonlinear defects demonstrate threshold dynamics of instable vibrations, hysteresis, super- and subharmonic resonances. Under nonlinear LDR conditions nearly total input energy can be converted into higher harmonic or subharmonic vibrations of the defect. This proposes nonlinear LDR application as an extremely efficient and sensitive mode for nonlinear imaging and NDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from higher harmonic generation. In: Mason, W.P. (ed.) Physical Acoustics, v. XVII. Academic Press, New York (1965)

    Google Scholar 

  2. Zarembo, L.K., Krasilnikov, V.A.: Nonlinear phenomena in the propagation of elastic waves in solids. Soviet Physics Uspekhi 13, 778–797 (1971)

    Article  Google Scholar 

  3. Gedroitz, A.A., Krasilnikov, V.A.: Elastic waves of finite amplitude and deviations from Hooke‘s law. Sov. Phys. JETP. 16, 1122 (1963)

    Google Scholar 

  4. Yost, W.T., Cantrell, J.H.: Materials characterization using acoustic nonlinearity parameters and harmonic generation: engineering materials. Rev. Prog. Quant. Nondestr. Eval. 9, 1669–1676 (1990)

    Google Scholar 

  5. Cantrell, J.H., Yost, W.T.: Effect of precipitate coherency strains on acoustic harmonic generation. J. Appl. Phys. 81, 2957 (1997)

    Article  Google Scholar 

  6. Buck, O., Morris, W.M., Richardson, J.M.: Acoustic harmonic generation at unbounded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)

    Article  Google Scholar 

  7. Len, K.S., Severin, F.M.: Experimental observation of Influence of contact nonlinearity on the reflection of bulk acoustic waves and propagation of surface acoustic waves. Sov. Phys. Acoust. 37, 610–612 (1991)

    Google Scholar 

  8. Solodov, I.: Ultrasonics of nonlinear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)

    Article  Google Scholar 

  9. Solodov, I., Krohn, N., Busse, G.: CAN: an example of nonclassical nonlinearity in solids. Ultrasonics 40, 621–625 (2002)

    Article  Google Scholar 

  10. Ballad, E.M., Korshak, B.A., Solodov, I., Busse, G.: Local nonlinear and parametric effects for non-bonded contacts in solids. In: Proceedings 16th ISNA, pp. 727–734, Moscow (2002)

  11. Solodov, I., Korshak, B.: Instability, chaos, and memory in acoustic wave–crack interaction. Phys. Rev. Lett. 88, 014303 (2002)

    Article  Google Scholar 

  12. Solodov, I., Wackerl, J., Pfleiderer, K., Busse, G.: Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location. Appl. Phys. Lett. 84, 5386–5388 (2004)

    Article  Google Scholar 

  13. Solodov, I., Bai, J., Bekgulyan, S., Busse, G.: A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive testing. Appl. Phys. Lett. 99, 211911 (2011)

    Article  Google Scholar 

  14. Solodov, I., Bai, J., Busse, G.: Resonant ultrasound spectroscopy of defects: case study of flat-bottomed holes. J. Appl. Phys. 113, 223512 (2013)

    Article  Google Scholar 

  15. Minorsky, N.: Nonlinear Oscillations. D. Van Nostrand Co., Princeton (1962)

    MATH  Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  17. McLachlan, N.W.: Theory and applications of mathieu functions. Oxford University Press, London (1951)

    Google Scholar 

  18. Kneubuehl, F.K.: Oscillations and Waves. Springer, Berlin (1997)

    Book  Google Scholar 

  19. Van Den Abeele, K.E.-A., Carmeliet, J., TenCate, J., Johnson, P.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12, 31–42 (2000)

    Article  Google Scholar 

  20. Van Den Abeele, K.E.-A., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30, 1453–1464 (2000)

    Article  Google Scholar 

  21. Johnson, P., Sutin, A.: Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117, 124–130 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges support of this study by EU FP-7 in the framework of ALAMSA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Solodov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solodov, I. Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE. J Nondestruct Eval 33, 252–262 (2014). https://doi.org/10.1007/s10921-014-0229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-014-0229-9

Keywords

Navigation