Skip to main content
Log in

Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Wavelets are a powerful tool for signal and image denoising. Most of the denoising applications in different fields were based on the thresholding of the discrete wavelet transform (DWT) coefficients. Nevertheless, DWT transform is not a time or shift invariant transform and results depend on the selected shift. Improvements on the denoising performance can be obtained using the stationary wavelet transform (SWT) (also called shift-invariant or undecimated wavelet transform). Denoising using SWT has previously shown a robust and usually better performance than denoising using DWT but with a higher computational cost. In this paper, wavelet shrinkage schemes are applied for reducing noise in synthetic and experimental non-destructive evaluation ultrasonic A-scans, using DWT and a cycle-spinning implementation of SWT. A new denoising procedure, which we call random partial cycle spinning (RPCS), is presented. It is based on a cycle-spinning over a limited number of shifts that are selected in a random way. Wavelet denoising based on DWT, SWT and RPCS have been applied to the same sets of ultrasonic A-scans and their performances in terms of SNR are compared. In all cases three well known threshold selection rules (Universal, Minimax and Sure), with decomposition level dependent selection, have been used. It is shown that the new procedure provides a good robust denoising performance, without the DWT fluctuating performance, and close to SWT but with a much lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Galloway, R.L., McDermott, B.A., Thurstone, F.L.: A frequency diversity process for speckle reduction in real-time ultrasonic images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 45–49 (1988)

    Article  Google Scholar 

  2. Newhouse, V.L., Bilgutay, N.M., Saniie, J., Furgason, E.S.: Flaw-to-grain echo enhancement by split spectrum processing. Ultrasonics 20, 59–68 (1982)

    Article  Google Scholar 

  3. Karpur, P., Canelones, O.J.: Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics 30, 351–357 (1992)

    Article  Google Scholar 

  4. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptotia? J. R Stat. Soc. Ser. B 57, 301–369 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R Stat. Soc. 59, 319–351 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jansen, M.: Noise Reduction by Wavelet Thresholding. Lecture Notes in Statistics 161. Springer, New York (2001). doi:10.1007/978-1-4613-0145-5

    Book  MATH  Google Scholar 

  9. Nason, G.P., Silverman, B.W.:The stationary wavelet transform and some statistical applications. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, Vol. 103, pp 281–299. Springer, New York (1995)

  10. Lang, M., Guo, H., Odegard, J.E., Burrus, C.S.: Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Proc. Lett. 3, 10–12 (1996)

    Article  Google Scholar 

  11. Coifman, R.R., Donoho, D.L.: Translation-invariant de-noising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics. Lecture Notes in Statistics, vol. 103, pp 125–150, Springer, New York (1995) .

  12. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 14–26 (1997)

    Article  Google Scholar 

  13. Lázaro, J.C., San Emeterio, J.L., Ramos, A., Fernandez, J.L.: Influence of thresholding procedures in ultrasonic grain noise reduction using wavelets. Ultrasonics 40, 263–267 (2002)

    Article  Google Scholar 

  14. Matz, V., Smid, R., Starman, S., Kreidl, M.: Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing. Ultrasonics 49, 752–759 (2009)

    Article  Google Scholar 

  15. Kubinyi, M., Kreibich, O., Neuzil, J., Smid, R.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1027–1036 (2011)

    Article  Google Scholar 

  16. Shi, G.M., Chen, X.Y., Song, X.X., Qui, F., Ding, A.L.: Signal matching wavelet for ultrasonic flaw detection in high background noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 776–787 (2011)

    Article  Google Scholar 

  17. Song, S.P., Que, P.W.: Wavelet based noise suppression technique and its application to ultrasonic flaw detection. Ultrasonics 44, 188–193 (2006)

  18. Rodriguez, M.A., San Emeterio, J.L., Lázaro, J.C., Ramos, A.: Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing. Ultrasonics 42, 847–851 (2004)

    Article  Google Scholar 

  19. Zhang, G.M., Zhang, S.Y., Wang, Y.W.: Application of adaptive time-frequency decomposition in ultrasonic NDE of highly-scattering materials. Ultrasonics 38, 961–964 (2000)

    Article  Google Scholar 

  20. Drai, R., Khelil, M., Benchaala, A.: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT & E Int. 35, 567–572 (2002)

    Article  Google Scholar 

  21. Pardo, E., San Emeterio, J.L.: Noise reduction in ultrasonic NDT using undecimated wavelet transforms. Ultrasonics 44, e1063–e1067 (2006)

    Article  Google Scholar 

  22. Kechida, A., Drai, R., Guessoum, A.: Texture analysis for flaw detection in ultrasonic images. J. Nondestruct. Eval. 31, 108–116 (2012). doi:10.1007/s10921-011-0126-4

    Article  Google Scholar 

  23. Rucka, M., Wilde, K.: Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 32, 372–383 (2013). doi:10.1007/s10921-013-0191-y

    Article  Google Scholar 

  24. Hosseini, S.M.H., Duczek, S., Gabbert, U.: Damage localization in plates using mode conversion characteristics of ultrasonic guided waves. J. Nondestruct. Eval. 33, 152–165 (2014). doi:10.1007/s10921-013-0211-y

    Google Scholar 

  25. Mohammed, M.S., Ki-Seong, K.: Shift-invariant wavelet packet for signal de-noising in ultrasonic testing. Insight 54, 366–370 (2012)

    Article  Google Scholar 

  26. San Emeterio, J.L., Rodriguez-Hernandez, M.A.: Wavelet denoising of ultrasonic A-scans by random partial cycle spinning. In: Proceedings of the 2012 IEEE International Ultrasonics Symposium. pp 455–458.

  27. Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  28. Shensa, M.J.: The discrete wavelet transform: wedding the à trous and Mallat algorithms. IEEE Trans. Signal Process. 40, 2464–2482 (1992). doi:10.1109/78.157290

    Article  MATH  Google Scholar 

  29. Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms. Commun. Pure Appl. Math. 44, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

  31. Romijn, R.L., Thijssen, J.M., Vanbeuningen, G.W.J.: Estimation of scatterer size from backscattered ultrasound: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 593–606 (1989)

    Article  Google Scholar 

  32. Gustafsson, M.G., Stepinski, T.: Studies of split spectrum processing, optimal detection, and maximum likehood amplitude estimation using a simple clutter model. Ultrasonics 35, 31–53 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish MCI Project DPI2011-22438

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Rodriguez-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Emeterio, J.L., Rodriguez-Hernandez, M.A. Wavelet Cycle Spinning Denoising of NDE Ultrasonic Signals Using a Random Selection of Shifts. J Nondestruct Eval 34, 270 (2015). https://doi.org/10.1007/s10921-014-0270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-014-0270-8

Keywords

Navigation