Skip to main content
Log in

Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter, \(\beta \). In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to \(\beta \), and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Breazeale, M.A., Thompson, D.O.: Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3, 77–78 (1963)

    Article  Google Scholar 

  2. Breazeale, M.A., Ford, J.: Ultrasonic studies of the nonlinear behavior of solids. J. Appl. Phys. 36, 3486–3490 (1965)

    Article  Google Scholar 

  3. Gedroitz, A.A., Krasilnikov, V.A.: Elastic waves of finite amplitude and deviationsfrom Hook’s law. Sov. Phys. JETP (Engl. Transl.) 16, 1122–1131 (1963)

    Google Scholar 

  4. Hikata, A., Chick, B.B., Elbaum, C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229–236 (1965)

    Article  Google Scholar 

  5. Hikata, A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev. 144, 469–477 (1966)

    Article  Google Scholar 

  6. Gauster, W.B., Breazeale, M.A.: Ultrasonic measurement of the nonlinearity parameters of copper single crystals. Phys. Rev. 168, 655–661 (1968)

    Article  Google Scholar 

  7. Yost, W.T., Cantrell, J.H., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of copper between 300 and 3 \(^\circ K\). J. Appl. Phys. 52, 126–128 (1981)

    Article  Google Scholar 

  8. Thompson, D.O., Buck, O., Barnes, R.S., Huntington, H.B.: Diffusional properties of the stage-III defect in copper. I. Experimental results. J. Appl. Phys. 38, 3051–3056 (1967)

    Article  Google Scholar 

  9. Thompson, D.O., Buck, O., Huntington, H.B., Barnes, P.S.: Diffusional properties of the stage-III defect in copper. II. A model for defect–dislocation interactions. J. Appl. Phys. 38, 3057 (1967)

  10. Thompson, D.O., Buck, O.: Diffusional properties of the stage-III defect in copper. III. Bulk diffusion. J. Appl. Phys. 38, 3068 (1967)

    Article  Google Scholar 

  11. Gauster, W.B., Breazeale, M.A.: Detector for measurement of ultrasonic strain amplitudes in solids. Rev. Sci. Instrum. 37, 1544–1548 (1966)

    Article  Google Scholar 

  12. Thompson, R.B., Buck, O., Thompson, D.O.: Higher harmonics of finite amplitude ultrasonic waves in solids. J. Acoust. Soc. Am. 59, 1087–1094 (1976)

    Article  Google Scholar 

  13. Yost, W.T., Breazeale, M.A.: Adiabatic third-order elastic constants of fused silica. J. Appl. Phys. 44, 1909–1910 (1973)

    Article  Google Scholar 

  14. Hurley, D.C., Fortunko, C.M.: Determination of the nonlinear ultrasonic parameter \(\beta \) using a Michelson interferometer. Meas. Sci. Technol. 8, 634–642 (1997)

    Article  Google Scholar 

  15. Cantrell, J.H., Breazeale, M.A.: Ultrasonic investigation of the nonlinearity of fused silica for different hydroxyl-ion contents and homogeneities between 300 and 3K. Phys. Rev. B. 17, 4864–4870 (1978)

    Article  Google Scholar 

  16. Cantrell, J.H.: Fundamentals and applications of nonlinear ultrasonic nondestructive evaluation. In: Kundu, T. (ed.) Ultrasonic Nondestructive Evaluation, pp. 363–434. CRC Press, Boca Raton (2004)

    Google Scholar 

  17. Nagy, P.B.: Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375–381 (1998)

    Article  Google Scholar 

  18. Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  19. Payan, C., Garnier, V., Moysan, J., Johnson, P.A.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121, EL125 (2007)

    Article  Google Scholar 

  20. Van Den Abeele, K.E.-A., Carmeliet, J., Ten Cate, J.A., Johnson, P.A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12, 31–42 (2000)

  21. Ballad, E.M., Vezirov, S.Y., Pfleiderer, K., Solodov, I.Y., Busse, G.: Nonlinear modulation technique for NDE with air-coupled ultrasound. Ultrasonics 42, 1031–1036 (2004)

    Article  Google Scholar 

  22. Van Den Abeele, K.E.-A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part i: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12, 17–30 (2000)

    Article  Google Scholar 

  23. Anderson, B.E., Griffa, M., Larmat, C., Ulrich, T.J., Johnson, P.A.: Time reversal. Acoust. Today 4, 5–16 (2008)

    Article  Google Scholar 

  24. Larmat, C.S., Guyer, R.A., Johnson, P.A.: Time-reversal methods in geophysics. Phys. Today 63(8), 31–35 (2010)

    Article  Google Scholar 

  25. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126, EL117–EL122 (2009)

    Article  Google Scholar 

  26. Liu, M., Tang, G., Jacobs, L.J., Qu, J.: Measuring acoustic nonlinearity parameter using collinear wave mixing. J. Appl. Phys. 112, 024908 (2012)

    Article  Google Scholar 

  27. Jhang, K.: Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material: a review. Int. J. Precis. Eng. Manuf. 10, 123–135 (2009)

  28. Zheng, Y., Maev, R.G., Solodov, I.Y.: Review/synthèse nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (2000)

  29. Cantrell, J.H.: Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 76, 3372 (1994)

    Article  Google Scholar 

  30. Norris, A.N.: Finite-amplitude waves in solids. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoust., pp. 263–277. Academic Press, San Diego (1998)

    Google Scholar 

  31. Shui, Y., Solodov, I.Y.: Nonlinear properties of Rayleigh and Stoneley waves in solids. J. Appl. Phys. 64, 6155 (1988)

    Article  Google Scholar 

  32. De Lima, W.J.N., Hamilton, M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)

    Article  Google Scholar 

  33. Barnard, D.J., Dace, G.E., Buck, O.: Acoustic harmonic generation due to thermal embrittlement of Inconel 718. J. Nondestruct. Eval. 16, 67–75 (1997)

    Google Scholar 

  34. Rogers, P.H., Van Buren, A.L.: An exact expression for the Lommel diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  MATH  Google Scholar 

  35. Shull, D.J., Kim, E.E., Hamilton, M.F., Zabolotskaya, E.A.: Diffraction effects in nonlinear Rayleigh wave beams. J. Acoust. Soc. Am. 97, 2126–2137 (1995)

    Article  Google Scholar 

  36. Ingenito, F., Williams, A.O.: Calculation of second-harmonic generation in a piston beam. J. Acoust. Soc. Am. 49, 319–328 (1971)

    Article  Google Scholar 

  37. Zabolotskaya, E.A.: Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am. 91, 2569–2575 (1992)

    Article  Google Scholar 

  38. Herrmann, J., Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W., Savage, M.F.: Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 99, 124913 (2006)

    Article  Google Scholar 

  39. Hurley, D.C.: Nonlinear propagation of narrow-band Rayleigh waves excited by a comb transducer. J. Acoust. Soc. Am. 106, 1782–1788 (1999)

    Article  MathSciNet  Google Scholar 

  40. Torello, D., Thiele, S., Matlack, K., Kim, J.-Y., Qu, J., Jacobs, L.J.: Diffraction, attenuation, and source corrections for nonlinear Rayleigh wave ultrasonic measurements. Ultrasonics 56, 417–426 (2015)

  41. Thiele, S., Kim, J., Qu, J., Jacobs, L.J.: Air-coupled detection of nonlinear rayleigh surface waves to assess material nonlinearity. Ultrasonics 54, 1470–1475 (2014)

    Article  Google Scholar 

  42. Walker, S.V., Kim, J.-Y., Qu, J., Jacobs, L.J.: Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT E Int. 48, 10–15 (2012)

    Article  Google Scholar 

  43. Ruiz, A., Ortiz, N., Medina, A., Kim, J.-Y., Jacobs, L.J.: Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT E Int. 54, 19–26 (2013)

    Article  Google Scholar 

  44. Hikata, A., Sewell, F.A., Elbaum, C.: Generation of ultrasonic second and third harmonics due to dislocations II. Phys. Rev. 151, 442–449 (1966)

    Article  Google Scholar 

  45. Cantrell, J.H., Yost, W.T.: Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)

    Article  Google Scholar 

  46. Cantrell, J.H.: Substructural organization, dislocation plasticity and harmonic generation in cyclically stressed wavy slip metals. Proc. R. Soc. Lond. Ser. A. 460, 757–780 (2004)

    Article  MATH  Google Scholar 

  47. Cantrell, J.H., Zhang, X.-G.: Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. J. Appl. Phys. 84, 5469–5472 (1998)

    Article  Google Scholar 

  48. Cantrell, J.H., Yost, W.T.: Determination of precipitate nucleation and growth rates from ultrasonic harmonic generation. Appl. Phys. Lett. 77, 1952–1954 (2000)

    Article  Google Scholar 

  49. Hurley, D.C., Balzar, D., Purtscher, P.T.: Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 15, 2036–2042 (2000)

    Article  Google Scholar 

  50. Biwa, S., Hiraiwa, S., Matsumoto, E.: Experimental and theoretical study of harmonic generation at contacting interface. Ultrasonics 44, e1319–e1322 (2006)

    Article  Google Scholar 

  51. Cantrell, J.H.: Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)

    Article  Google Scholar 

  52. Nazarov, V.E., Sutin, A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102, 3349–3354 (1997)

    Article  Google Scholar 

  53. Suzuki, T., Hikata, A., Elbaum, C.: Anharmonicity due to glide motion of dislocations. J. Appl. Phys. 35, 2761 (1964)

    Article  MATH  Google Scholar 

  54. Granato, A., Lücke, K.: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27, 583–593 (1956)

    Article  MATH  Google Scholar 

  55. Cash, W.D., Cai, W.: Dislocation contribution to acoustic nonlinearity: the effect of orientation-dependent line energy. J. Appl. Phys. 109, 014915 (2011)

    Article  Google Scholar 

  56. Zhang, J., Xuan, F., Xiang, Y.: Dislocation characterization in cold rolled stainless steel using nonlinear ultrasonic techniques: a comprehensive model. Europhys. Lett. 103, 68003 (2013)

    Article  Google Scholar 

  57. Zhang, J., Xuan, F.: A general model for dislocation contribution to acoustic nonlinearity. Europhys. Lett. 105, 54005 (2014)

    Article  Google Scholar 

  58. Viswanath, A., Rao, B.P.C., Mahadevan, S., Parameswaran, P., Jayakumar, T., Raj, B.: Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlinear ultrasonic technique. J. Mater. Process. Technol. 211, 538–544 (2011)

    Article  Google Scholar 

  59. Chen, Z., Qu, J.: Dislocation-induced acoustic nonlinearity parameter in crystalline solids. J. Appl. Phys. 114, 164906 (2013)

    Article  Google Scholar 

  60. Cash, W.D., Cai, W.: Contribution of dislocation dipole structures to the acoustic nonlinearity. J. Appl. Phys. 111, 074906 (2012)

    Article  Google Scholar 

  61. Cantrell, J.H., Yost, W.T.: Acoustic harmonic-generation from fatigue-induced dislocation dipoles. Philos. Mag. A. 69, 315–326 (1994)

    Article  Google Scholar 

  62. Apple, T.M., Cantrell, J.H., Amaro, C.M., Mayer, C.R., Yost, W.T., Agnew, S.R., Howe, J.M.: Acoustic harmonic generation from fatigue-generated dislocation substructures in copper single crystals. Philos. Mag. 93, 2802–2825 (2013)

    Article  Google Scholar 

  63. Cantrell, J.H.: Ultrasonic harmonic generation from fatigue-induced dislocation substructures in planar slip metals and assessment of remaining fatigue life. J. Appl. Phys. 106, 1–6 (2009)

  64. Thiele, S.: Air-coupled detection of Rayleigh surface waves to asses material nonlinearity due to precipitation in alloy steel. Master’s Thesis, Georgia Institute of Technology (2013)

  65. Eringen, A.C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)

    Google Scholar 

  66. Thiele, S., Matlack, K.H., Kim, J.-Y., Qu, J., Wall, J.J., Jacobs, L.J.: Assessment of precipitation in alloy steel using nonlinear Rayleigh surface waves. destructive Evaluation, vol. 1581, pp. 682–689. AIP Publishing (2014)

  67. Martin, J.W.: Precipitation Hardening. Permagon Press, Oxford (1968)

    Google Scholar 

  68. Hirose, S., Achenbach, J.D.: Higher harmonics in the far field due to dynamic crack-face contacting. J. Acoust. Soc. Am. 93, 142–147 (1993)

    Article  Google Scholar 

  69. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  70. Greenwood, J.A., Williamson, J.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A. 295, 300–319 (1966)

    Article  Google Scholar 

  71. Kim, J.-Y., Lee, J.-S.: A micromechanical model for nonlinear acoustic properties of interfaces between solids. J. Appl. Phys. 101, 043501 (2007)

    Article  Google Scholar 

  72. Pecorari, C.: Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the Preisach-Mayergoyz framework. J. Acoust. Soc. Am. 116, 1938–1947 (2004)

    Article  Google Scholar 

  73. Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation measurements. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, vol. XVII, pp. 1–60. Academic Press, New York (1984)

    Google Scholar 

  74. Kim, J.-Y., Jacobs, L.J., Qu, J., Littles, J.W.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266–1273 (2006)

    Article  Google Scholar 

  75. Matlack, K.H., Wall, J.J., Kim, J.-Y., Qu, J., Jacobs, L.J., Viehrig, H.-W.: Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 054911 (2012)

    Article  Google Scholar 

  76. Matlack, K.H., Kim, J.-Y., Wall, J.J., Qu, J., Jacobs, L.J., Sokolov, M.A.: Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels. J. Nucl. Mater. 448, 26–32 (2014)

    Article  Google Scholar 

  77. Adler, E.L., Bridoux, E., Coussot, G., Dieulesaint, E.: Harmonic generation of acoustic surface waves in Bi12GeO20 and LiNbO3. IEEE Trans. Sonics Ultrason. 20, 13–16 (1973)

    Article  Google Scholar 

  78. Shull, D.J., Hamilton, M.F., Il’insky, Y.A., Zabolotskaya, E.A.: Harmonic generation in plane and cylindrical nonlinear Rayleigh waves. J. Acoust. Soc. Am. 94, 418–427 (1993)

    Article  Google Scholar 

  79. Barnard, D.J., Brasche, L.J.H., Raulerson, D., Degtyar, A.D.: Monitoring fatigue damage accumulation with rayleigh wave harmonic generation measurements. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1393–1400. AIP, New York (2003)

    Google Scholar 

  80. Liu, M., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates—feasibility of measuring residual stress. NDT E Int. 44, 67–74 (2011)

    Article  Google Scholar 

  81. Blackshire, J.L., Sathish, S., Na, J.K., Frouin, J.: Nonlinear laser ultrasonic measurements of localized fatigue damage. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1479–1488. AIP, New York (2003)

    Google Scholar 

  82. Bermes, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)

    Article  Google Scholar 

  83. Deng, M., Pei, J.: Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902–121903 (2007)

    Article  Google Scholar 

  84. Pruell, C., Kim, J.-Y., Qu, J., Jacobs, L.J.: Evaluation of fatigue damage using nonlinear guided waves. Smart Mater. Struct. 18, 035003 (7 pp.) (2009)

  85. Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Experimental characterization of efficient second harmonic generation of Lamb wave modes in a nonlinear elastic isotropic plate. J. Appl. Phys. 109, 014905 (2011)

    Article  Google Scholar 

  86. Frouin, J., Sathish, S., Matikas, T.E., Na, J.K.: Ultrasonic linear and nonlinear behavior of fatigued Ti-6Al-4V. J. Mater. Res. 14, 1295–1298 (1998)

    Article  Google Scholar 

  87. Viswanath, A., Rao, B.P.C., Mahadevan, S., Jayakumar, T., Baldev, R.: Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic technique. J. Mater. Sci. 45, 6719–6726 (2010)

    Article  Google Scholar 

  88. Cantrell, J.H., Salama, K.: Acoustoelastic characterization of materials. Int Mater Rev. 36, 125–145 (1991)

    Article  Google Scholar 

  89. Yost, W.T., Cantrell, J.H.: Anomalous nonlinearity parameters of solids at low acoustic drive amplitudes. Appl. Phys. Lett. 94, 021905 (2009)

    Article  Google Scholar 

  90. Moreau, A.: Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J. Acoust. Soc. Am. 98, 2745–2752 (1995)

    Article  Google Scholar 

  91. Yost, W.T., Cantrell, J.H., Kushnick, P.W.: Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity. J. Acoust. Soc. Am. 91, 1456–1468 (1992)

    Article  Google Scholar 

  92. Dace, G.E., Thompson, R.B., Buck, O.: Measurement of the acoustic harmonic generation for materials characterization using contact transducers. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 2069–2076. Plenium Press, New York (1992)

    Google Scholar 

  93. Dace, G.E., Thompson, R.B., Brasche, L.J.H., Rehbein, D.K., Buck, O.: Nonlinear acoustics, a technique to determine microstructural changes in materials. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of progress in quantitative nondestructive evaluation, pp. 1685–1692. Plenum Press, New York (1991)

    Chapter  Google Scholar 

  94. Li, P., Yost, W.T., Cantrell, J.H., Salama, K.: Dependence of acoustic nonlinearity parameter on second phase. IEEE Ultrasonics Symposium. pp. 1113–1115 (1985)

  95. Yost, W.T., Cantrell, J.H.: The effects of artificial aging of aluminum 2024 on its nonlinearity parameter. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 2067–2073. Plenum Press, New York (1993)

    Chapter  Google Scholar 

  96. Sun, L., Kulkarni, S.S., Achenbach, J.D., Krishnaswamy, S.: Technique to minimize couplant-effect in acoustic nonlinearity measurements. J. Acoust. Soc. Am. 120, 2500–2505 (2006)

    Article  Google Scholar 

  97. Baby, S., Kowmudi, B.N., Omprakash, C.M., Satyanarayana, D.V.V., Balasubramaniam, K., Kumar, V.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scr. Mater. 59, 818–821 (2008)

    Article  Google Scholar 

  98. Nucera, C., Lanza di Scalea, F.: Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vib. 333, 541–554 (2014)

    Article  Google Scholar 

  99. Hurley, D.C., Balzar, D., Purtscher, P.T., Hollman, K.W.: Nonlinear ultrasonic parameter in quenched martensitic steels. J. Appl. Phys. 83, 4584–4588 (1998)

    Article  Google Scholar 

  100. Li, W., Cho, Y., Lee, J., Achenbach, J.D.: Assessment of heat treated inconel X-750 alloy by nonlinear ultrasonics. Exp. Mech. 53, 775–781 (2012)

    Article  Google Scholar 

  101. Kim, C.S., Park, I.K., Jhang, K.-Y.: Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E Int. 42, 204–209 (2009)

    Article  Google Scholar 

  102. Liu, S., Croxford, A.J., Neild, S.A., Zhou, Z.: Effects of experimental variables on the nonlinear harmonic generation technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 1442–1451 (2011)

    Article  Google Scholar 

  103. Na, J.K., Breazeale, M.A.: Ultrasonic nonlinear properties of lead zicronate-titanate ceramics. J. Acoust. Soc. Am. 95, 3213–3221 (1994)

    Article  Google Scholar 

  104. Barnard, D.J.: Variation of nonlinearity parameter at low fundamental amplitudes. Appl. Phys. Lett. 74, 2447 (1999)

    Article  Google Scholar 

  105. Cantrell, J.H., Yost, W.T.: Determination of Peierls stress from acoustic harmonic generation. Philos. Mag. Lett. 92, 128–132 (2012)

    Article  Google Scholar 

  106. Cantrell, J.H.: Nonlinear dislocation dynamics at ultrasonic frequencies. J. Appl. Phys. 105, 1–7 (2009)

    Article  Google Scholar 

  107. Yost, W.T., Cantrell, J.H.: Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer. Rev. Sci. Instrum. 63, 4182 (1992)

    Article  Google Scholar 

  108. Yost, W.T., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of germanium between 300 and 77K. Phys. Rev. B. 9, 510–516 (1974)

    Article  Google Scholar 

  109. Hess, P., Lomonosov, A.M., Mayer, A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics. 54, 39–55 (2014)

    Article  Google Scholar 

  110. Green, R.E.: Non-contact ultrasonic techniques. Ultrasonics 42, 9–16 (2004)

    Article  Google Scholar 

  111. Stratoudaki, T., Hernandez, J.A., Clark, M., Somekh, M.G.: Cheap optical transducers (CHOTs) for narrowband ultrasonic applications. Meas. Sci. Technol. 18, 843–851 (2007)

    Article  Google Scholar 

  112. Collison, I.J., Stratoudaki, T., Clark, M., Somekh, M.G.: Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves. Ultrasonics 48, 471–477 (2008)

    Article  Google Scholar 

  113. Stratoudaki, T., Ellwood, R., Sharples, S., Clark, M., Somekh, M.G., Collison, I.J.: Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J. Acoust. Soc. Am. 129, 1721–8 (2011)

    Article  Google Scholar 

  114. Ellwood, R., Stratoudaki, T., Sharples, S.D., Clark, M., Somekh, M.G.: Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: An alternative to static strain. J. Acoust. Soc. Am. 135, 1064–1070 (2014)

  115. Shui, G., Kim, J.-Y., Qu, J., Wang, Y.-S., Jacobs, L.J.: A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves. NDT E Int. 41, 326–329 (2008)

    Article  Google Scholar 

  116. Shui, G., Wang, Y.: Ultrasonic evaluation of early damage of a coating by using second- harmonic generation technique. J. Appl. Phys. 111, 124902 (2012)

    Article  Google Scholar 

  117. Rao, V.V.S.J., Kannan, E., Prakash, R.V., Balasubramaniam, K.: Fatigue damage characterization using surface acoustic wave nonlinearity in aluminum alloy AA7175-T7351. J. Appl. Phys. 104, 123508 (2008)

    Article  Google Scholar 

  118. Morris, W.L., Buck, O., Inman, R.V.: Acoustic harmonic generation due to fatigue damage in high-strength aluminum. J. Appl. Phys. 50, 6737–6741 (1979)

    Article  Google Scholar 

  119. Ogi, H., Hirao, M., Aoki, S.: Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels. J. Appl. Phys. 90, 438–442 (2001)

    Article  Google Scholar 

  120. Cobb, A., Capps, M., Duffer, C., Feiger, J., Robinson, K., Hollingshaus, B.: Nonlinear ultrasonic measurements with EMATs for detecting pre-cracking fatigue damage. In: Thomson, D.O. and Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation. pp. 299–306. AIP Publishing (2012)

  121. Castaings, M., Cawley, P.: The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J. Acoust. Soc. Am. 100, 3070–3077 (1996)

    Article  Google Scholar 

  122. Wright, W.M.D., Hutchins, D.A., Hayward, G., Gachagan, A.: Ultrasonic imaging using laser generation and piezoelectric air-coupled detection. Ultrasonics 34, 405–409 (1996)

    Article  Google Scholar 

  123. Zhu, J., Popovics, J.: Non-contact detection of surface waves in concrete using an air-coupled sensor. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1261–1268. American Institute of Physics, Melville, NY (2002)

    Google Scholar 

  124. Tuzzeo, D., di Scalea, F.L.: Noncontact air-coupled guided wave ultrasonics for detection of thinning defects in aluminum plates. Res. Nondestruct. Eval. 13, 61–77 (2001)

    Article  Google Scholar 

  125. Grandia, W.A., Fortunko, C.M.: NDE applications of air-coupled ultrasonic transducers. IEEE Ultrason. Symp. 1, 697–709 (1995)

    Google Scholar 

  126. Deighton, M.O., Gillespie, A.B., Pike, R.B., Watkins, R.D.: Mode conversion of Rayleigh and Lamb waves to compression waves at a metal-liquid interface. Ultrasonics 19, 249–258 (1981)

    Article  Google Scholar 

  127. Bender, F.A., Kim, J.-Y., Jacobs, L.J., Qu, J.: The generation of second harmonic waves in an isotropic solid with quadratic nonlinearity under the presence of a stress-free boundary. Wave Motion. 50, 146–161 (2013)

    Article  MathSciNet  Google Scholar 

  128. Buck, O., Morris, W.L., Richardson, J.M.: Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33, 371–373 (1978)

    Article  Google Scholar 

  129. Yost, W.T., Cantrell, J.H.: The effects of fatigue on acoustic nonlinearity in aluminum alloys. IEEE Ultrason. Symp. 947–955 (1992)

  130. Cantrell, J.H.: Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation. J. Appl. Phys. 100, 063508 (2006)

    Article  Google Scholar 

  131. Kulkarni, S.S., Sun, L., Moran, B., Krishnaswamy, S., Achenbach, J.D.: A probabilistic method to predict fatigue crack initiation. Int. J. Fract. 137, 9–17 (2006)

    Article  MATH  Google Scholar 

  132. Kulkarni, S.S., Achenbach, J.D.: Structural health monitoring and damage prognosis in fatigue. Struct. Heal. Monit. 7, 37–49 (2008)

    Article  Google Scholar 

  133. Jhang, K.-Y., Kim, K.-C.: Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37, 39–44 (1999)

    Article  Google Scholar 

  134. Na, J.K., Yost, W.T., Cantrell, J.H.: Linear and nonlinear ultrasonic properties of fatigued 410CB stainless steel. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, p. 1347. Plenum Press, New York (1996)

    Chapter  Google Scholar 

  135. Kumar, A., Torbet, C.J., Jones, J.W., Pollock, T.M.: Nonlinear ultrasonics for in situ damage detection during high frequency fatigue. J. Appl. Phys. 106, 024904 (2009)

    Article  Google Scholar 

  136. Kumar, A., Adharapurapu, R.R., Jones, J.W., Pollock, T.M.: In situ damage assessment in a cast magnesium alloy during very high cycle fatigue. Scr. Mater. 64, 65–68 (2011)

    Article  Google Scholar 

  137. Kumar, A., Torbet, C.J., Pollock, T.M.: Wayne Jones, J.: In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements. Acta Mater. 58, 2143–2154 (2010)

    Article  Google Scholar 

  138. Campos-Pozuelo, C., Vanhille, C., Gallego-Juárez, J.A.: Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 175–84 (2006)

    Article  Google Scholar 

  139. Shui, G., Wang, Y.-S., Gong, F.: Evaluation of plastic damage for metallic materials under tensile load using nonlinear longitudinal waves. NDT E Int. 55, 1–8 (2013)

    Article  Google Scholar 

  140. Kim, J.-Y., Qu, J., Jacobs, L.J., Littles, J.W., Savage, M.F.: Acoustic Nonlinearity Parameter Due to Microplasticity. J. Nondestruct. Eval. 25, 28–36 (2006)

    Article  Google Scholar 

  141. Rao, V.V.S.J., Kannan, E., Prakash, R.V., Balasubramaniam, K.: Observation of two stage dislocation dynamics from nonlinear ultrasonic response during the plastic deformation of AA7175-T7351 aluminum alloy. Mater. Sci. Eng. A. 512, 92–99 (2009)

    Article  Google Scholar 

  142. Cantrell, J.H., Yost, W.T.: Effect of precipitate coherency strains on acoustic harmonic generation. J. Appl. Phys. 81, 2957–2962 (1997)

    Article  Google Scholar 

  143. Mukhopadhyay, A., Sarkar, R., Punnose, S., Valluri, J., Nandy, T.K., Balasubramaniam, K.: Scatter in nonlinear ultrasonic measurements due to crystallographic orientation change induced anisotropy in harmonics generation. J. Appl. Phys. 111, 054905 (2012)

    Article  Google Scholar 

  144. Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT&E Int. 44, 768–774 (2011)

    Article  Google Scholar 

  145. Metya, A., Ghosh, M., Parida, N., Palit Sagar, S.: Higher harmonic analysis of ultrasonic signal for ageing behaviour study of C-250 grade maraging steel. NDT E Int. 41, 484–489 (2008)

    Article  Google Scholar 

  146. Jeong, H., Nahm, S.-H., Jhang, K.-Y., Nam, Y.-H.: A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity. Ultrasonics 41, 543–549 (2003)

    Article  Google Scholar 

  147. Park, J., Kim, M., Chi, B., Jang, C.: Correlation of metallurgical analysis and higher harmonic ultrasound response for long term isothermally aged and crept FM steel for USC TPP turbine rotors. NDT E Int. 54, 159–165 (2013)

    Article  Google Scholar 

  148. Abraham, S.T., Albert, S.K., Das, C.R., Parvathavarthini, N., Venkatraman, B., Mini, R.S., Balasubramaniam, K.: Assessment of sensitization in AISI 304 stainless steel by nonlinear ultrasonic method. Acta Metall. Sin. 26, 545–552 (2013)

    Article  Google Scholar 

  149. Xiang, Y., Deng, M., Xuan, F.-Z., Liu, C.-J.: Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics 51, 974–981 (2011)

    Article  Google Scholar 

  150. Balasubramaniam, K., Valluri, J.S., Prakash, R.V.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Mater. Charact. 62, 275–286 (2011)

    Article  Google Scholar 

  151. Valluri, J.S., Balasubramaniam, K., Prakash, R.V.: Creep damage characterization using non-linear ultrasonic techniques. Acta Mater. 58, 2079–2090 (2010)

    Article  Google Scholar 

  152. Narayana, V.J.S., Balasubramaniam, K., Prakash, R.V., Thompson, D.O., Chimenti, D.E.: Detection and prediction of creep-damage of copper using nonlinear acoustic techniques. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1410–1417. American Institute of Physics, San Diego (2010)

    Google Scholar 

  153. Kim, C.S., Lissenden, C.J.: Precipitate contribution to the acoustic nonlinearity in nickel-based superalloy. Chin. Phys. Lett. 26, 086107 (2009)

    Article  Google Scholar 

  154. Matlack, K.H., Wall, J.J., Kim, J.-Y., Qu, J., Jacobs, L.J.: Nonlinear ultrasound to monitor radiation damage in structural steel. 6th European Workshop on Structural Health Monitoring. pp. 1–8 (2012)

  155. Odette, G.R., Lucas, G.E.: Embrittlement of nuclear reactor pressure vessels. JOM 53, 18–22 (2001)

  156. Zeitvogel, D.T., Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Singh, P.M., Qu, J.: Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves. NDT E Int. 62, 144–152 (2014)

    Article  Google Scholar 

  157. Biwa, S., Nakajima, S., Ohno, N.: On the acoustic nonlinearity of solid-solid contact with pressure-dependent interface stiffness. J. Appl. Mech. 71, 508–515 (2004)

    Article  MATH  Google Scholar 

  158. Hirsekorn, S.: Nonlinear transfer of ultrasound by adhesive joints—a theoretical description. Ultrasonics 39, 57–68 (2001)

    Article  Google Scholar 

  159. Wegner, A., Koka, A., Janser, K., Netzelmann, U., Hirsekorn, S., Arnold, W.: Assessment of the adhesion quality of fusion-welded silicon wafers with nonlinear ultrasound. Ultrasonics 38, 316–321 (2000)

    Article  Google Scholar 

  160. Solodov, I.Y.: Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)

    Article  Google Scholar 

  161. Van Den Abeele, K., Desadeleer, W., De Schutter, G., Wevers, M.: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics. Cem. Concr. Res. 39, 426–432 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Matlack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matlack, K.H., Kim, JY., Jacobs, L.J. et al. Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals. J Nondestruct Eval 34, 273 (2015). https://doi.org/10.1007/s10921-014-0273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-014-0273-5

Keywords

Navigation