Skip to main content
Log in

Nonlinear Imaging Method Using Second Order Phase Symmetry Analysis and Inverse Filtering

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper presents a nonlinear imaging method based on nonlinear elastic guided waves, for the damage detection and localisation in a composite laminate. The proposed technique relies on the study of the structural nonlinear responses by means of a combination of second order phase symmetry analysis (PSA) with chirp excitation and inverse filtering (IF) method. PSA was used to exploit the invariant properties of the propagating elastic waves with the phase angle of the pulse compressed chirp signals, in order to characterise the second order nonlinear behaviour of the medium. Then, the IF approach was applied to a library of second order nonlinear responses to obtain a two-dimensional image of the damage. The experimental tests carried out on an impact damage composite sample were compared to standard C-scan. The results showed that the present technique allowed achieving the optimal focalisation of the nonlinear source in the spatial and time domain, by taking advantage of multiple scattering and a small number of receiver sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ciampa, F., Meo, M.: Impact localization on a composite tail rotor blade using an inverse filtering approach. J. Intell. Mater. Syst. Struct. 25(15), 1950–1958 (2014)

    Article  Google Scholar 

  2. Inh, J.-B., Chang, F.-K.: Pitch-catch active sensing method in structural health monitoring for aircraft structures. Struct. Health Monit. 7(1), 5–19 (2008)

    Article  Google Scholar 

  3. Ulrich, T.J., Johnson, P.A., Guyer, R.A.: Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror. Phys. Rev. Lett. 98, 104301 (2007). 1-4

    Article  Google Scholar 

  4. Guyer, R.A., Johnson, P.A.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  5. Meo, M., Zumpano, G.: Nonlinear elastic wave spectroscopy identification of impact damage on sandwich plate. Compos. Struct. 71, 469–474 (2005)

    Article  Google Scholar 

  6. Van Den Abeele, K.E.-A., Johnston, P.-A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12(1), 17–30 (2000)

    Article  Google Scholar 

  7. Ciampa, F., Pickering, S., Scarselli, G., Meo, M.: Nonlinear damage detection in composite structures using bispectral analysis. In: Proceedings of SPIE 9064, Health Monitoring of Structural and Biological Systems 2014, San Diego. doi:10.1117/12.2046631

  8. Scalerandi, M., Gliozzi, A.S., Bruno, C.L.E., Masera, D., Bocca, P.: A scaling method to enhance detection of a nonlinear elastic response. Appl. Phys. Lett. 92, 101912 (2008)

    Article  Google Scholar 

  9. Dos Santos, S., Prevorovsky, Z.: Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics. Ultrasonics 51, 667–674 (2011)

    Article  Google Scholar 

  10. Ciampa, F., Meo, M.: Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis. J. Acoust. Soc. Am. 131, 4316–4323 (2012)

    Article  Google Scholar 

  11. Landau, L.-D., Lifshitz, E.-M.: Theory of Elasticity, Chap. III. Pergamon, Oxford (1986)

    Google Scholar 

  12. Ciampa, F., Barbieri, E., Meo, M.: Modelling of multiscale nonlinear interaction of elastic waves with three dimensional cracks. J. Acoust. Soc. Am. 135(4), 3209 (2014). doi:10.1121/1.4868476

    Article  Google Scholar 

  13. Ciampa, F., Onder, E., Barbieri, E., Meo, M.: Detection and modelling on nonlinear elastic response in damaged composite structures. J. Nondestr. Eval. 33, 515 (2014). doi:10.1007/s10921-014-0247-7

    Article  Google Scholar 

  14. Matar, O.B., Guerder, P.-Y., Li, Y., Vandewoestyne, B., Van Den Abeele, K.E.-A.: A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. J. Acoust. Soc. Am. 131(5), 3650–3663 (2012)

    Article  Google Scholar 

  15. Barbieri, E., Meo, M.: Time reversal DORT method applied to nonlinear elastic wave scattering. Wave Motion 47(7), 452–467 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Delsanto, P., Scalerandi, M.: A spring model for the simulation of the propagation of ultrasonic pulses through imperfect contact interfaces. J. Acoust. Soc. Am. 104, 2584 (1998)

    Article  Google Scholar 

  17. Goursolle, T., Callè, S., Dos Santos, S., Bou Matar, O.: A two dimensional pseudospectral model for time reversal (TR) and nonlinear elastic wave spectroscopy (NEWS). J. Acoust. Soc. Am. 122(6), 3220–3229 (2007)

    Article  Google Scholar 

  18. Pecorari, C.: Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the Preisach-Mayergoyz framework. J. Acoust. Soc. Am. 116, 1938–1947 (2004)

    Article  Google Scholar 

  19. Solodov, I.-Y.: Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36, 383–390 (1998)

    Article  Google Scholar 

  20. Ulrich, T.J., Sutin, A.M., Claytor, T., Papin, P., Le Bas, P.Y., TenCate, J.A.: The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds. Appl. Phys. Lett. 93, 151914 (2008)

    Article  Google Scholar 

  21. Ciampa, F., Pickering, S., Scarselli, G., Gianpiccolo, A., Meo, M.: Nonlinear elastic tomography using sparse array measurements, In: Proceedings of EWSHM - 7th European Workshop on Structural Health Monitoring, Jul 2014, Nantes, France, \(\langle \)hal-01022040\(\rangle \) (2014)

  22. Anderson, B.E., Griffa, M., Ulrich, T.J.: Time reversal reconstruction of finite sized sources in elastic media. J. Acoust. Soc. Am. 130, EL219–EL225 (2011)

    Article  Google Scholar 

  23. Prada, C., Mannevile, S., Spoliansky, D., Fink, M.: Decomposition of the time reversal operator: detection and selective focusing on two scatterers. J. Acoust. Soc. Am. 99, 2067–2076 (1996)

    Article  Google Scholar 

  24. Frazier, M., Taddese, B., Antonsen, T., Anlage, S.M.: Nonlinear time reversal in a wave chaotic system. Phys. Rev. Lett. 110, 063902 (2013)

    Article  Google Scholar 

  25. Guo, X.S., Zhang, D., Zhang, J.: Detection of fatigue-induced micro-cracks in a pipe by using time-reversed nonlinear guided waves: a three-dimensional model study. Ultrasonics 52(7), 912–919 (2012)

    Article  Google Scholar 

  26. Fink, M.: Time reversal of ultrasonic fields. I: basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992)

    Article  Google Scholar 

  27. Tanter, M., Thomas, J.L., Fink, M.: Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. J. Acoust. Soc. Am. 103(5), 2403–2410 (1998)

    Article  Google Scholar 

  28. Quieffin N.: Etude du rayonnement acoustique de structures solides: vers un systeme d’ imagerie haute resolution. PhD thesis, University Paris VI (2004)

  29. Dos Santos, S., Vejvodova, S., Prevorovsky, Z.: Nonlinear signal processing for ultrasonic imaging of material complexity. Proc. Est. Acad. Sci. 59, 301–311 (2011)

    Google Scholar 

  30. Misaridis, T., Jensen, J.A.: Use of modulated excitation signals in medical ultrasound. Part II. Design and performance for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 192–207 (2005)

    Article  Google Scholar 

  31. Greblicki, W.: Nonparametric approach to Wiener system identification. IEEE Trans. Circ. Syst. - I 44(6), 538–545 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Meo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciampa, F., Scarselli, G. & Meo, M. Nonlinear Imaging Method Using Second Order Phase Symmetry Analysis and Inverse Filtering. J Nondestruct Eval 34, 7 (2015). https://doi.org/10.1007/s10921-015-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-015-0279-7

Keywords

Navigation