Skip to main content
Log in

Assessing the Scaling Subtraction Method for Impact Damage Detection in Composite Plates

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The scaling subtraction method (SSM) is a non-destructive measurement approach used to extract nonlinear features from the elastic response of a structure. As such it can be used for damage detection purposes by identifying nonlinearities that may result from the presence of micro cracks or inclusions in granular and metallic materials. The effectiveness of such a technique to detect the presence of damage modes typical of laminated composite materials has not been yet assessed. With the purpose of filling this gap, in this paper the SSM is applied to inspect two laminated composite plates with different sizes, impact positions and sensor arrangement. Intact and damaged specimens are tested under harmonic excitations of different amplitude and frequency (the latter selected among the ultrasonic natural frequencies of the two plates). For each excitation case the recorded vibration signals are subtracted from the linearly rescaled reference signals and the SSM nonlinear indicators are calculated. The sensitivity of the method to the presence of damage is assessed in different sensor-receiver scenarios as well as for different excitation frequency and amplitude levels. Finite element numerical investigations are also performed to make comparisons with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Worden, K., Farrar, C.R., Haywood, J., Todd, M.: A review of nonlinear dynamics applications to structural health monitoring. Struct. Control Health Monit. 15(4), 540–567 (2008). doi:10.1002/stc.215

    Article  Google Scholar 

  2. Nagy, P.B.: Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375–381 (1998). doi:10.1016/S0041-624X(97)00040-1

    Article  Google Scholar 

  3. Ciampa, F., Onder, E., Barbieri, E., Meo, M.: Detection and modelling of nonlinear elastic response in damaged composite structures. J. Nondestruct. Eval. 33(4), 515–521 (2014). doi:10.1007/s10921-014-0247-7

    Article  Google Scholar 

  4. Van Den Abeele, K.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17–30 (2000). doi:10.1007/s001640000002

    Article  Google Scholar 

  5. Van Den Abeele, K.A., Johnson, P.A., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestruct. Eval. 12(1), 31–42 (2000). doi:10.1080/09349840009409647

    Article  Google Scholar 

  6. Scalerandi, M., Gliozzi, A.S., Bruno, C.L.E., Masera, D., Bocca, P.: A scaling method to enhance detection of a nonlinear elastic response. Appl. Phys. Lett. 92, 101912 (2008). doi:10.1063/1.2890031

    Article  Google Scholar 

  7. Scalerandi, M., Gliozzi, A.S., Bruno, C.L., Van Den Abeele, K.: Nonlinear acoustic time reversal imaging using the scaling subtraction method. J. Phys. D 41(21), 215404 (2008). doi:10.1088/0022-3727/41/21/215404

    Article  Google Scholar 

  8. Bruno, C.L., Gliozzi, A.S., Scalerandi, M., Antonaci, P.: Analysis of elastic nonlinearity using the scaling subtraction method. Phys. Rev. B 79(6), 064108 (2009). doi:10.1103/PhysRevB.79.064108

    Article  Google Scholar 

  9. Antonaci, P., Bruno, C.L., Gliozzi, A.S., Scalerandi, M.: Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 40(7), 1106–1113 (2010). doi:10.1016/j.cemconres.2010.02.017

    Article  MATH  Google Scholar 

  10. Antonaci, P., Formia, A., Gliozzi, A.S., Scalerandi, M., Tulliani, J.M.: Diagnostic application of nonlinear ultrasonics to characterize degradation by expansive salts in masonry systems. NDT&E Int. 55, 57–63 (2013). doi:10.1016/j.ndteint.2013.01.013

    Article  Google Scholar 

  11. Antonaci, P., Bruno, C.L., Gliozzi, A.S., Scalerandi, M.: Evolution of damage-induced nonlinearity in proximity of discontinuities in concrete. Int. J. Solid. Struct. 47(11–12), 1603–1610 (2010). doi:10.1016/j.ijsolstr.2010.02.025

    Article  MATH  Google Scholar 

  12. Antonaci, P., Bruno, C.L., Scalerandi, M., Tondolo, F.: Effects of corrosion on linear and nonlinear elastic properties of reinforced concrete. Cem. Concr. Res. 51, 96–103 (2013). doi:10.1016/j.cemconres.2013.04.006

    Article  Google Scholar 

  13. Scalerandi, M., Griffa, M., Antonaci, P., Wyrzykowski, M., Lura, P.: Nonlinear elastic response of thermally damaged consolidated granular media. J. Appl. Phys. 113(15) (2013). doi:10.1063/1.4801801

  14. Ulrich, T.J., Johnson, P.A., Sutin, A.: Imaging nonlinear scatterers applying the time reversal mirror. J. Acoust. Soc. Am. 119(3), 1514–1518 (2006). doi:10.1121/1.2168413

    Article  Google Scholar 

  15. Tracy, J.J., Pardoen, G.C.: Effect of delamination on the flexural stiffness of composite laminates. Thin-Walled Struct. 6(5), 371–383 (1988)

    Article  Google Scholar 

  16. Toyama, N., Takatsubo, J.: Lamb wave method for quick inspection of impact-induced delamination in composite laminates. Compos. Sci. Technol. 64(9), 1293–1300 (2004). doi:10.1016/j.compscitech.2003.10.011

    Article  Google Scholar 

  17. Cantwell, W.J., Morton, J.: Detection of impact damage in CFRP laminates. Compos. Struct. 3(3), 241–257 (1985). doi:10.1016/0263-8223(85)90056-X

    Article  Google Scholar 

  18. Bull, D.J., Helfen, L., Sinclair, I., Spearing, S.M., Baumbach, T.: A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos. Sci. Technol. 75, 55–61 (2013). doi:10.1016/j.compscitech.2012.12.006

    Article  Google Scholar 

  19. Seltzer, R., González, C., Muñoz, R., LLorca, J., Blanco-Varela, T.: X-ray microtomography analysis of the damage micromechanisms in 3D woven composites under low-velocity impact. Composites Part A 45, 49–60 (2013). doi:10.1016/j.compositesa.2012.09.017

    Article  Google Scholar 

  20. Meo, M., Polimeno, U., Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 15(3), 115–126 (2008). doi:10.1007/s10443-008-9061-7

    Article  Google Scholar 

  21. Ryu, C.H., Park, S.H., Kim, D.H., Jhang, K.Y., Kim, H.S.: Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Compos. Struct. (2015). doi:10.1016/j.compstruct.2015.09.055

    Google Scholar 

  22. Solodov, I., Rahammer, M., Derusova, D., Busse, G.: Highly-efficient and noncontact vibro-thermography via local defect resonance. Quant. InfraRed Thermogr. J. 12(1), 98–111 (2015). doi:10.1080/17686733.2015.1026018

    Article  Google Scholar 

  23. Pieczonka, Ł., Szwedo, M.: Vibrothermography. In: Stepinski, T., Uhl, T., Staszewski, W.J. (eds.) Advanced Structural Damage Detection: From Theory to Engineering Applications, pp. 233–261. Wiley, New York (2013). doi:10.1002/9781118536148

    Google Scholar 

  24. Pieczonka, Ł., Aymerich, F., Brozek, G., Szwedo, M., Staszewski, W.J., Uhl, T.: Modelling and numerical simulations of vibrothermography for impact damage detection in composites structures. Struct. Control Health Monit. 20(4), 626–638 (2013). doi:10.1002/stc.1483

    Article  Google Scholar 

  25. Garnier, C., Pastor, M.L., Eyma, F., Lorrain, B.: The detection of aeronautical defects in situ on composite structures using non destructive testing. Compos. Struct. 93(5), 1328–1336 (2011). doi:10.1016/j.compstruct.2010.10.017

    Article  Google Scholar 

  26. Aggelis, D.G., Barkoula, N.M., Matikas, T.E., Paipetis, A.S.: Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72(10), 1127–1133 (2012). doi:10.1016/j.compscitech.2011.10.011

    Article  Google Scholar 

  27. Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.M., Pradere, C., Carlomagno, G.M.: Thermal (IR) and other NDT techniques for improved material inspection. J. Nondestruct. Eval. 35(1), 1–17 (2016). doi:10.1007/s10921-015-0331-7

    Article  Google Scholar 

  28. Zou, Y., Tong, I., Steven, G.P.: Vibration-based model dependent damage (delamination) identification and health monitoring for composite structures: a review. J. Sound Vib. 230, 357–378 (2000). doi:10.1006/jsvi.1999.2624

    Article  Google Scholar 

  29. Montalvao, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib. Digest 38(4), 295–326 (2006). doi:10.1177/0583102406065898

    Article  Google Scholar 

  30. Ooijevaar, T.H., Warnet, L.L., Loendersloot, R., Akkerman, R., Tinga, T.: Impact damage identification in composite skin-stiffener structures based on modal curvatures. Struct. Control Health Monit. 23(2), 198–217 (2016). doi:10.1002/stc.1754

    Article  Google Scholar 

  31. Pérez, M.A., Gil, L., Oller, S.: Impact damage identification in composite laminates using vibration testing. Compos. Struct. 108, 267–276 (2014). doi:10.1016/j.compstruct.2013.09.025

    Article  Google Scholar 

  32. Yuan, S., Wang, L., Peng, G.: Neural network method based on a new damage signature for structural health monitoring. Thin-Walled Struct. 43(4), 553–563 (2005). doi:10.1016/j.tws.2004.10.003

    Article  Google Scholar 

  33. Ullah, I., Sinha, J.K., Pinkerton, A.: Vibration-based delamination detection in a composite plate. Mech. Adv. Mater. Struct. 20(7), 536–551 (2013). doi:10.1080/15376494.2011.643275

    Article  Google Scholar 

  34. Pieczonka, Ł., Staszewski, W.J., Uhl, T.: Investigation of nonlinear vibro-acoustic wave modulation mechanisms in composite laminates. Key Eng. Mater. 569, 96–102 (2013). doi:10.4028/www.scientific.net/KEM.569-570.96

    Article  Google Scholar 

  35. Klepka, A., Pieczonka, Ł., Staszewski, W.J., Aymerich, F.: Composites Part B 65, 99–108 (2014). doi:10.1016/j.compositesb.2013.11.003

    Article  Google Scholar 

  36. Chen, B.Y., Soh, S.K., Lee, H.P., Tay, T.E., Tan, V.B.: A vibro-acoustic modulation method for the detection of delamination and kissing bond in composites. J. Compos. Mater. 50(22), 3089–3104 (2016). doi:10.1177/0021998315615652

    Article  Google Scholar 

  37. Le Bas, P.-Y., Remillieux, M.C., Pieczonka, L., Ten Cate, J.A., Anderson, B.E., Ulrich, T.J.: Damage imaging in a laminated composite plate using an air-coupled time reversal mirror. Appl. Phys. Lett. 107(18), 184102 (2015). doi:10.1063/1.4935210

  38. Klepka, A., Strączkiewicz, M., Pieczonka, Ł., Staszewski, W.J., Gelman, L., Aymerich, F., Uhl, T.: Triple correlation for detection of damage-related impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations nonlinearities in composite structures. Nonlinear Dynam. 81(1–2), 453–468 (2015). doi:10.1007/s11071-015-2004-6

    Article  MathSciNet  Google Scholar 

  39. Frau, A., Pieczonka, Ł., Porcu, M.C., Staszewski, W.J., Aymerich, F.: Analysis of elastic nonlinearity for impact damage detection in composite laminates. J. Phys. Conf. Ser. 628(1), 012103 (2015). doi:10.1088/1742-6596/628/1/012103

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Marco Ibba for doing some numerical simulations relevant to the present investigation during his master’s thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Porcu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porcu, M.C., Pieczonka, L., Frau, A. et al. Assessing the Scaling Subtraction Method for Impact Damage Detection in Composite Plates. J Nondestruct Eval 36, 33 (2017). https://doi.org/10.1007/s10921-017-0413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0413-9

Keywords

Navigation