Skip to main content
Log in

Experimental Investigation of Notch-Type Damage Identification with a Curvature-Based Method by Using a Continuously Scanning Laser Doppler Vibrometer System

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper experimentally investigates a notch-type damage identification methodology for beams by using a continuously scanning laser Doppler vibrometer (CSLDV) system. Velocity response of a beam along a scan line under sinusoidal excitation is measured by the CSLDV system and an operating deflection shape (ODS) of the beam is obtained by the demodulation method from velocity response. The ODS of an associated undamaged beam is obtained by using a polynomial with a proper order to fit the ODS from the demodulation method. The curvature of an ODS (CODS) can be calculated with a high quality due to a dense measurement grid of the ODS. A curvature damage index (CDI) is proposed to identify a notch with a length of 1 mm along a beam and a depth of 0.9 mm under different excitation frequencies. The CDI uses differences between CODSs associated with ODSs that are obtained by the demodulation method and the polynomial fit; an auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist identification of damage. An averaging technique is applied to velocity response of the beam to reduce measurement noise. Effects of the number of averages on ODSs, CODSs, and CDIs are investigated. Four scan lines with an equal length of 151 mm and different locations with respect to the notch are used to investigate reliability of the proposed methodology. Finally, a whole scan line with a length of 555 mm along the beam is applied and the notch is successfully identified near regions with consistently high values of CDIs at different excitation frequencies; it can also be identified with the auxiliary CDI by a prominent peak at the location of the notch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Stanbridge, A., Ewins, D.: Mech. Syst Signal Process. 13(2), 255 (1999)

    Article  Google Scholar 

  2. Stanbridge, A., Ewins, D., Khan, A.: Shock Vib. 7(2), 91 (2000)

    Article  Google Scholar 

  3. Di Maio, D., Ewins, D.: Mech. Syst. Signal Process. 25(8), 3027 (2011)

    Article  Google Scholar 

  4. Allen, M.S., Sracic, M.W.: Mech. Syst. Signal Process. 24(3), 721 (2010)

    Article  Google Scholar 

  5. Doebling, S.W., Farrar, C.R., Prime, M.B., et al.: Shock Vib. Dig. 30(2), 91 (1998)

    Article  Google Scholar 

  6. Fan, W., Qiao, P.: Struct. Health Monit. 10(1), 83 (2011)

    Article  Google Scholar 

  7. Xu, Y., Chen, D.M., Zhu, W.: Mech. Syst. Signal Process. 92, 226 (2017)

    Article  Google Scholar 

  8. Xu, Y., Zhu, W.: Struct. Health Monit. 16(1), 3 (2017)

    Article  Google Scholar 

  9. Xu, G.Y., Zhu, W.D., Emory, B.H.: J. Vib. Acoust. 129(6), 686 (2007)

    Article  Google Scholar 

  10. Zhu, W.D., He, K.: J. Vib. Acoust. 135(5), 051001 (2013)

    Article  Google Scholar 

  11. He, K., Zhu, W.D.: J. Vib. Acoust. 136(3), 034503 (2014)

    Article  Google Scholar 

  12. Farrar, C.R., Jauregui, D.A.: Smart Mater. Struct. 7(5), 704 (1998)

    Article  Google Scholar 

  13. Khan, A., Stanbridge, A.B., Ewins, D.J.: Opt. Lasers Eng. 32(6), 583 (1999)

    Article  Google Scholar 

  14. Pandey, A., Biswas, M., Samman, M.: J. Sound Vib. 145(2), 321 (1991)

    Article  Google Scholar 

  15. Wahab, M.A., De Roeck, G.: J. Sound Vib. 226(2), 217 (1999)

    Article  Google Scholar 

  16. Sampaio, R., Maia, N., Silva, J.: J. Sound Vib. 226(5), 1029 (1999)

    Article  Google Scholar 

  17. Ratcliffe, C.P.: J. Vib. Acoust. 122(3), 324 (2000)

    Article  Google Scholar 

  18. Yoon, M.K., Heider, D., Gillespie Jr., J.W., Ratcliffe, C.P., Crane, R.M.: J. Nondestruct. Eval. 28(2), 63 (2009)

    Article  Google Scholar 

  19. Xu, Y.F., Zhu, W.D., Liu, J., Shao, Y.M.: J. Sound Vib. 333(23), 6273 (2014)

    Article  Google Scholar 

  20. Chen, D.M., Xu, Y.F., Zhu, W.D.: J. Vib. Acoust. 138(5), 05011 (2016)

    Google Scholar 

  21. Chen, D.M., Zhu, W.: J. Sound Vib. 387, 36 (2017)

    Article  Google Scholar 

  22. Martin, P., Rothberg, S.: Opt. Lasers Eng. 47(3), 431 (2009)

    Article  Google Scholar 

  23. Sazonov, E., Klinkhachorn, P.: J. Sound Vib. 285(4), 783 (2005)

    Article  Google Scholar 

  24. Ewins, D.J.: Modal Testing: Theory, Practice and Application, 2nd edn. Research Studies Press, Hertfordshire (2000)

    Google Scholar 

  25. Martarelli, M., Ewins, D.J.: Mech. Syst. Signal Process. 20(8), 2277 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Science Foundation under Grant Nos. CMMI-1229532 and CMMI-1335024 and the College of Engineering and Information Technology at the University of Maryland, Baltimore County through a Strategic Plan Implementation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DM., Xu, Y.F. & Zhu, W.D. Experimental Investigation of Notch-Type Damage Identification with a Curvature-Based Method by Using a Continuously Scanning Laser Doppler Vibrometer System. J Nondestruct Eval 36, 38 (2017). https://doi.org/10.1007/s10921-017-0418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0418-4

Keywords

Navigation