Skip to main content
Log in

More than Fifty Shades of Grey: Quantitative Characterization of Defects and Interpretation Using SNR and CNR

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The quantitative characterization of defects in images is commonly performed using the signal-to-noise ratio (SNR). However, there is a strong debate about this measure. First, because there is no single accepted definition of SNR. Second, because the SNR measurements are highly affected by the regions used to estimate the power of the signal and noise in the image. This work provides an overview of some of the most commonly used SNR measures. Images with different sources of noise, and defects with different contrasts, are used to evaluate and compare the ability of these measures to quantitatively characterize defects. The measures are also evaluated when the images are transformed using common image processing operations, including filtering and gamma correction. This work also proposes a methodology to define the regions used to estimate the power of the signal and noise in the images. Two alternative procedures are proposed weather prior information is available about the inspected specimen or not. The proposed methodology is applied on real data from infrared testing, where the considered SNR measures are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Hellier, C.: Handbook of Nondestructive Evaluation. McGraw-Hill, New York (2001)

    Google Scholar 

  2. Haykin, S.: Communication Systems, 4th edn. Wiley, New York (2001)

    Google Scholar 

  3. van Walree, P.: On the definition of receiver output snr and the probability of bit error. In: OCEANS-Bergen, 2013 MTS/IEEE, pp. 1–9. IEEE (2013)

  4. ASTM E2007: Standard Guide for Computed Radiography (2010)

  5. ASTM E2737: Standard Practice for Digital Detector Array Performance Evaluation and Long-Term Stability (2010)

  6. Smith, S.W., et al.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Pub, San Diego (1997)

    Google Scholar 

  7. Ibarra-Castanedo, C., Piau, J.M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20(1), 1–31 (2009)

    Article  Google Scholar 

  8. den Dekker, A.J., Poot, D.H., Bos, R., Sijbers, J.: Likelihood-based hypothesis tests for brain activation detection from mri data disturbed by colored noise: a simulation study. IEEE Trans. Med. Imaging 28(2), 287–296 (2009)

    Article  Google Scholar 

  9. Florez-Ospina, J.F., Benitez-Restrepo, H.: Toward automatic evaluation of defect detectability in infrared images of composites and honeycomb structures. Infrared Phys. Technol. 71, 99–112 (2015)

    Article  Google Scholar 

  10. Tang, Q., Bu, C., Liu, Y., Qi, L., Yu, Z.: A new signal processing algorithm of pulsed infrared thermography. Infrared Phys. Technol. 68, 173–178 (2015)

    Article  Google Scholar 

  11. Vincent, T., Risser, L., Ciuciu, P.: Spatially adaptive mixture modeling for analysis of fmri time series. IEEE Trans. Med. Imaging 29(4), 1059–1074 (2010)

    Article  Google Scholar 

  12. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., López, I.: A quantitative comparison of stimulation and post-processing thermographic inspection methods applied to aeronautical carbon fibre reinforced polymer. Quant. InfraRed Thermogr. J. 10(1), 55–73 (2013)

    Article  Google Scholar 

  13. Madruga, F.J., Ibarra-Castanedo, C., Conde, O.M., López-Higuera, J.M., Maldague, X.: Infrared thermography processing based on higher-order statistics. NDT & E Int. 43(8), 661–666 (2010)

    Article  Google Scholar 

  14. Balageas, D.L.: Defense and illustration of time-resolved thermography for nde. In: Thermosense XXXIII, pp. 22–33. SPIE (2011)

  15. Shepard, S., Rubadeux, B., Ahmed, T.: Automated thermographic defect recognition and measurement. In: AIP Conference Proceedings, vol. 497, pp. 373–378. AIP (1999)

  16. Hidalgo-Gato García, R., Andrés Álvarez, J.R., López Higuera, J.M., Madruga Saavedra, F.J., et al.: Quantification by signal to noise ratio of active infrared thermography data processing techniques. Opt. Photonics J. (2013)

  17. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., Bulnes, F.G.: Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7), 12305–12348 (2014)

    Article  Google Scholar 

  18. Susa, M., Maldague, X., Boras, I.: Improved method for absolute thermal contrast evaluation using source distribution image (sdi). Infrared Phys. Technol. 53(3), 197–203 (2010)

    Article  Google Scholar 

  19. Welvaert, M., Rosseel, Y.: On the definition of signal-to-noise ratio and contrast-to-noise ratio for fmri data. PloS ONE 8(11), e77,089 (2013)

    Article  Google Scholar 

  20. EN 13068-1: Non-destructive testing—radioscopic testing—Part 1: Quantitative measurement of imaging properties (1999)

  21. IEEE Std 181-2011 (Revision of IEEE Std 181-2003): IEEE Standard for Transitions, Pulses, and Related Waveforms (2011)

  22. Song, X., Pogue, B.W., Jiang, S., Doyley, M.M., Dehghani, H., Tosteson, T.D., Paulsen, K.D.: Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 43(5), 1053–1062 (2004)

    Article  Google Scholar 

  23. Jiang, H., Lu, N., Yao, L.: A high-fidelity haze removal method based on hot for visible remote sensing images. Remote Sens. 8(10), 844 (2016)

    Article  Google Scholar 

  24. Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58(4), 521–528 (2002)

    Article  Google Scholar 

  25. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D., Ahmed, T.: Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42(5), 1337–1342 (2003)

    Article  Google Scholar 

  26. Balageas, D.L.: Defense and illustration of time-resolved pulsed thermography for nde. Quant. InfraRed Thermogr. J. 9(1), 3–32 (2012)

    Article  Google Scholar 

  27. Maldague, X.P.: Nondestructive testing handbook. 3. Infrared and thermal testing. American Society for Nondestructive Testing (2001)

  28. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Usamentiaga, R., Garcia, D., Ibarra-Castanedo, C., Maldague, X.: Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets. Measurement 112, 105–116 (2017)

    Article  Google Scholar 

  30. Usamentiaga, R., Garcia, D., Ibarra-Castanedo, C., Maldague, X.: Metric measurements on a plane with an infrared camera. In: AITA Conference Proceedings, vol. 1, pp. 1–4. AITA (2017)

  31. Usamentiaga, R.: Easy rectification for infrared images. Infrared Phys. Technol. 76, 328–337 (2016)

    Article  Google Scholar 

  32. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 50, pp. 10–5244. Manchester, UK (1988)

  33. Usamentiaga, R., Garcia, D.F.: Enhanced temperature monitoring system for sinter in a rotatory cooler. IEEE Trans. Industry Appl. 53(2), 1589–1597 (2017)

    Article  Google Scholar 

  34. Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing, vol. 59. SPIE Press (2003)

  35. Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., López, I.: Automatic detection of impact damage in carbon fiber composites using active thermography. Infrared Phys. Technol. 58, 36–46 (2013)

    Article  Google Scholar 

  36. Sethian, J.A., et al.: Level set methods and fast marching methods. J. Comput. Inf. Technol. 11(1), 1–2 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been partially funded by the Spanish National Program for Mobility of Professors and Researchers at an International Level, Reference PRX17/00031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Usamentiaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usamentiaga, R., Ibarra-Castanedo, C. & Maldague, X. More than Fifty Shades of Grey: Quantitative Characterization of Defects and Interpretation Using SNR and CNR. J Nondestruct Eval 37, 25 (2018). https://doi.org/10.1007/s10921-018-0479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0479-z

Keywords

Navigation