Skip to main content
Log in

Monitoring of Stresses in Concrete Using Ultrasonic Coda Wave Comparison Technique

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Condition or health monitoring of concrete structures has experienced increasing interest over the last decade. While conventional sensors such as strain gauges are accurate and reliable, they only allow for surface observations. In contrast, ultrasonic waves propagate through the thickness of a member and can thus detect internal changes. In this paper we present an ultrasonic monitoring approach that uses a coda wave comparison (CWC) technique, which makes use of the highly sensitive diffuse (or coda) portion of a recorded ultrasonic waveform. In this study, the changes in the applied stress were correlated to the changes observed in the ultrasonic waveforms, which were estimated using magnitude-squared coherence (MSC). The CWC technique was evaluated by investigating key influence parameters that affect the relationship between MSC and the applied stress. First, two concrete cylinders were cast and tested to study the effect of maximum aggregate size. Second, two concrete prisms were used to study the effect of the frequency of the transmitted pulse. Finally, we discuss a field test involving a prestressed concrete bridge girder and a column. The results show that MSC is capable of discriminating minute stress changes in a laboratory as well as a field setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, Y., Planès, T., Larose, E., Obermann, A., Rospars, C., Moreau, G.: Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. J Acoust. Soc. Am. 139, 1691–1701 (2016). https://doi.org/10.1121/1.4945097

    Article  Google Scholar 

  2. Zhang, Y., Abraham, O., Grondin, F., Loukili, A., Tournat, V., Duff, A.Le, Lascoup, B., Durand, O.: Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry. Ultrasonics 52, 1038–1045 (2012). https://doi.org/10.1016/j.ultras.2012.08.011

    Article  Google Scholar 

  3. Hughes, D.S., Kelly, J.L.: Second-order elastic deformation of solids. Phys. Rev. 92, 1145–1149 (1953). https://doi.org/10.1103/PhysRev.92.1145

    Article  MATH  Google Scholar 

  4. Murnaghan, F.D., Murnaghan, B.F.: Finite deformations of an elastic solid. Am. J. Math. 59, 235–260 (1937).

    Article  MathSciNet  Google Scholar 

  5. Planès, T., Larose, E.: A review of ultrasonic Coda Wave Interferometry in concrete. Cem. Concr. Res. 53, 248–255 (2013). https://doi.org/10.1016/j.cemconres.2013.07.009

    Article  Google Scholar 

  6. Stähler, S.C., Sens-Schönfelder, C., Niederleithinger, E.: Monitoring stress changes in a concrete bridge with coda wave interferometry. J. Acoust. Soc. Am. 129, 1945–1952 (2011). https://doi.org/10.1121/1.3553226

    Article  Google Scholar 

  7. Hafiz, A., Schumacher, T.: Monitoring of applied stress in concrete using ultrasonic full-waveform comparison techniques. In: Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017. p. 101692Z. International Society for Optics and Photonics (2017)

  8. Grêt, A., Snieder, R., Scales, J.: Time-lapse monitoring of rock properties with coda wave interferometry. J. Geophys. Res. (2006). https://doi.org/10.1029/2004jb003354

    Article  Google Scholar 

  9. Legland, J.-B., Zhang, Y., Abraham, O., Durand, O., Tournat, V.: Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry. J. Acoust. Soc. Am. 142, 2233–2241 (2017). https://doi.org/10.1121/1.5007832

    Article  Google Scholar 

  10. Snieder, R.: The theory of coda wave interferometry. Pure Appl. Geophys. 163, 455–473 (2006). https://doi.org/10.1007/s00024-005-0026-6

    Article  Google Scholar 

  11. Payan, C., Quiviger, A., Garnier, V., Chaix, J.F., Salin, J.: Applying diffuse ultrasound under dynamic loading to improve closed crack characterization in concrete. J. Acoust. Soc. Am. 134, 211–216 (2013). https://doi.org/10.1121/1.4813847

    Article  Google Scholar 

  12. Larose, E., Obermann, A., Digulescu, A., Planes, T., Chaix, J.-F., Mazerolle, F., Moreau, G.: Locating and characterizing a crack in concrete with diffuse ultrasound: a four-point bending test. J. Acoust. Soc. Am. 138, 232–241 (2015)

    Article  Google Scholar 

  13. Bui, D., Kodjo, S.A., Rivard, P., Fournier, B.: Evaluation of concrete distributed cracks by ultrasonic travel time shift under an external mechanical perturbation: study of indirect and semi-direct transmission configurations. J. Nondestr. Eval. 32, 25–36 (2013). https://doi.org/10.1007/s10921-012-0155-7

    Article  Google Scholar 

  14. Schurr, D.P., Kim, J.Y., Sabra, K.G., Jacobs, L.J.: Damage detection in concrete using coda wave interferometry. NDT & E Int. 44, 728–735 (2011). https://doi.org/10.1016/j.ndteint.2011.07.009

    Article  Google Scholar 

  15. Moradi-Marani, F., Kodjo, S.A., Rivard, P., Lamarche, C.-P.: Effect of the temperature on the nonlinear acoustic behavior of reinforced concrete using dynamic acoustoelastic method of time shift. J. Nondestr. Eval. 33, 288–298 (2014). https://doi.org/10.1007/s10921-013-0221-9

    Article  Google Scholar 

  16. Schurr, D.P., Kim, J.Y., Sabra, K.G., Jacobs, L.J.: Monitoring damage in concrete using diffuse ultrasonic coda wave interferometry. In: AIP Conference Proceedings. pp. 1283–1290 (2011)

  17. Shokouhi, P.: Stress-and damage-induced changes in coda wave velocities in concrete. In: AIP Conference Proceedings. pp. 382–389. AIP (2013)

  18. Shokouhi, P., Niederleithinger, E., Zoëga, A., Barner, A., Schöne, D.: Using ultrasonic coda wave interferometry for monitoring stress induced changes in concrete. Symp. Appl. Geophys. Eng. Environ. Probl. 2010, 650–654 (2010). https://doi.org/10.4133/1.3445493

    Article  Google Scholar 

  19. Larose, E., Hall, S.: Monitoring stress related velocity variation in concrete with a 2 × 10−5 relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 125, 1853–1856 (2009)

    Article  Google Scholar 

  20. Jiang, H., Zhang, J., Jiang, R.: Stress evaluation for rocks and structural concrete members through ultrasonic wave analysis. J. Mater. Civ. Eng. 29, 4017172 (2017)

    Article  Google Scholar 

  21. Liu, S., Zhu, J., Wu, Z.: Implementation of Coda Wave Interferometry Using Taylor Series Expansion. J. Nondest. Eval. (2015). https://doi.org/10.1007/s10921-015-0300-1

    Article  Google Scholar 

  22. Larose, E., Planes, T., Rossetto, V., Margerin, L.: Locating a small change in a multiple scattering environment. Appl. Phys. Lett. doi (2010). https://doi.org/10.1007/s10921-015-0300-1

    Article  Google Scholar 

  23. Planès, T., Larose, E., Margerin, L., Rossetto, V., Sens-Schönfelder, C.: Decorrelation and phase-shift of coda waves induced by local changes: multiple scattering approach and numerical validation. Waves Random Complex Media. 24, 99–125 (2014). https://doi.org/10.1080/17455030.2014.880821

    Article  MATH  Google Scholar 

  24. Niederleithinger, E., Wolf, J., Mielentz, F., Wiggenhauser, H., Pirskawetz, S.: Embedded ultrasonic transducers for active and passive concrete monitoring. Sensors. 15, 9756–9772 (2015). https://doi.org/10.3390/s150509756

    Article  Google Scholar 

  25. Hafiz, A., Schumacher, T.: Characterizing the effect of applied stress in concrete by magnitude-squared coherence of ultrasonic full-waveforms. In: Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance-Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017 (2017)

  26. Grosse, C.: Quantitative zerstörungsfreie Prüfung von Baustoffen mittels Schallemissionsanalyse und Ultraschall (1996)

  27. Chen, A., Schumacher, T.: Characterization of flaws in structural steel members using diffuse wave fields. In: AIP Conference Proceedings. pp. 761–768 (2014)

  28. Fröjd, P., Ulriksen, P.: Detecting damage events in concrete using diffuse ultrasound structural health monitoring during strong environmental variations. Struct. Health Monit. 17, 410–419 (2018). https://doi.org/10.1177/1475921717699878

    Article  Google Scholar 

  29. Zhang, Y., Abraham, O., Tournat, V., Le Duff, A., Lascoup, B., Loukili, A., Grondin, F., Durand, O.: Validation of a thermal bias control technique for Coda Wave Interferometry (CWI). Ultrasonics 53, 658–664 (2013). https://doi.org/10.1016/j.ultras.2012.08.003

    Article  Google Scholar 

  30. Große, C., Schumacher, T.: Anwendungen der Schallemissionsanalyse an Betonbauwerken. Bautechnik. 90, 721–731 (2013). https://doi.org/10.1002/bate.201300074

    Article  Google Scholar 

  31. Manolakis, D.G., Ingle, V.K., Kogon, S.M.: Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing. McGraw-Hill, Boston (2000)

    Google Scholar 

  32. Cohen, J.: Statistical power analysis for the behavioral sciences, http://books.google.com/books?id=Tl0N2lRAO9oC&pgis=1 (1988)

  33. Fröjd, P., Ulriksen, P.: Frequency selection for coda wave interferometry in concrete structures. Ultrasonics 80, 1–8 (2017). https://doi.org/10.1016/j.ultras.2017.04.012

    Article  Google Scholar 

  34. ASTM C597-02: Standard Test Method for Pulse Velocity Trough Concrete. Annual Book of ASTM Standards. pp. 3–6 (2002). https://doi.org/10.1520/c0597-09

Download references

Acknowledgements

We would like to acknowledge the financial support from the Higher Committee of Education Development in Iraq (HCED), which funded the first author, and the Department of Civil and Environmental Engineering at Portland State University for providing laboratory equipment and specimens. Finally, we thank Mr. Salih Mahmood for assisting with the finite element model illustrated in Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schumacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafiz, A., Schumacher, T. Monitoring of Stresses in Concrete Using Ultrasonic Coda Wave Comparison Technique. J Nondestruct Eval 37, 73 (2018). https://doi.org/10.1007/s10921-018-0527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0527-8

Keywords

Navigation