Skip to main content
Log in

Detection of Internal Defects in Carbon Fiber Reinforced Plastic Slabs Using Background Thermal Compensation by Filtering and Support Vector Machines

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Composite materials, such as Carbon-Fiber-Reinforced Plastic (CFRP), are used in many industries because they have advantages over more traditional materials. However, CFRPs may have structural flaws, because mechanical stress or manufacturing process, that represent an important risk for the safe operation of CFRP-made structures. This study analyzes the performance in detection of internal defects, by means of training and operating Support Vector Machines (SVM) with thermal contrast information obtained from Background Thermal Compensation by Filtering (BTCF) technique. IR images were obtained by using an Active Pulsed Thermography (PT) system, under two different conditions, for inspection of a 20 × 20 cm CFRP slab with 25 squared Teflon insertions as emulated defects. Detection results show that the combination of BTCF contrast technique and SVM classifier leads to a greater sensibility (22 of 23 defects considered) than other combinations of thermal contrast, feature selection and classifiers proposed in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ibarra-Castanedo, C., et al.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20(1), 1–31 (2009)

    Article  Google Scholar 

  2. Ibarra-Castanedo, C., Tarpani, J., Maldague, X.: Nondestructive testing with thermography. Eur. J. Phys. 34(6), 91–109 (2013)

    Article  Google Scholar 

  3. Valdés, M., Inamura, M., Valera, J., Yao, L.: Multidimensional filtering approaches for pre-processing thermal images. Multidimens. Syst. Signal Process. 17(4), 299–325 (2006)

    Article  Google Scholar 

  4. Alsaadawi, Z., Netzelmann, U.,: Spatio-temporal filtering of active thermography data for noise reduction and data compression. In Proceedings of 10th International Conference on Quantitative InfraRed Thermography (QIRT 2010). Québec, Canada (2010)

  5. Restrepo-Girón, A., Loaiza-Correa, H.: New advances in multidimensional processing for thermal image quality enhancement. In: Santhi, V. (ed.) Recent advances in applied thermal imaging for industrial applications, pp. 202–248. IGI Global, Hershey PA (2017)

    Chapter  Google Scholar 

  6. García, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)

    Article  MathSciNet  Google Scholar 

  7. Benítez, H., Loaiza, H., Caicedo, E.,: Termografía activa pulsada en inspección de materiales. Técnicas avanzadas de procesado [Active pulsed thermography for materials inspection. Advanced processing techniques]. Universidad del Valle—Pontificia Universidad Javeriana. Cali, Colombia (2011)

  8. Madruga, F., Ibarra-Castanedo, C., Conde, O., López-Higuera, J., Maldague, X.: Infrared thermography processing based on higher-order statistics. NDT&E Intern. 43(8), 661–666 (2010)

    Article  Google Scholar 

  9. Roche, J., Leroy, F., Balageas, D.: Images of TSR coefficients: a simple way for rapid and efficient detection of discontinuities. Mater. Eval. 72(1), 73–82 (2013)

    Google Scholar 

  10. Bishop, C.M.: Pattern recognition and machine learning. Springer, Cambridge (2006)

    MATH  Google Scholar 

  11. Peeters, J., Ibarra-Castanedo, C., Sfarra, S., Maldague, X., Dirckx, J., Steenackers, G.: Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT&E Intern. 87, 119–123 (2017)

    Article  Google Scholar 

  12. Junyan, L., Qingju, T., Xun, L., Yang, Y.: Research on the quantitative analysis of subsurface defects for non-destructive testing by lock-in thermography. NDT&E Intern. 45(1), 104–110 (2012)

    Article  Google Scholar 

  13. Benítez, H., Loaiza, H., Caicedo, E., Ibarra-Castanedo, C., Bendada, A., Maldague, X.: Defect characterization in infrared non-destructive testing with learning machines. NDT&E Intern. 42(7), 630–643 (2009)

    Article  Google Scholar 

  14. Darabi, A., Maldague, X.: Neural network based defect detection and depth estimation in TNDE. NDT&E Intern. 35(3), 165–175 (2002)

    Article  Google Scholar 

  15. Luo, Y., Yan, Z., Wang, K., Wang, L.,: Infrared Image Registration of Damage in the Aircraft Skin Based on Lie Group Machine Learning. In: 26th Chinese Control and Decision Conference (CCDC) (2014)

  16. Dudzik, S.: Analysis of the accuracy of a neural algorithm for defect depth estimation using PCA processing from active thermography data. Infrared Phys. Technol. 56, 1–7 (2013)

    Article  Google Scholar 

  17. Restrepo, A., Loaiza, H.: Background thermal compensation by filtering for contrast enhancement in active thermography. J. Nondestruct. Eval. 35(1), 20 (2016)

    Article  Google Scholar 

  18. Jimenez, L., Rengifo, P.: Al interior de una máquina de soporte vectorial [Inside of a Support Vector Machine]. Rev. Ciencias Univ. del Val. 14, 73–85 (2010)

    Google Scholar 

  19. Riobó, V.: Reconocimiento de localizaciones mediante máquinas de soporte vectorial [Locations recognition by support vector macines]. Dissertation, Universidad Carlos III, Madrid (2012)

  20. Ledezma, W.: Máquinas de Soporte Vectorial (SVM) para la Detección de Nódulos Pulmonares En Tomografía Axial Computarizada (TAC) [Support Vector Machines (SVM) for Detection of Pulmonary Nodules in Computerized Axial Tomography]. Dissertation, Pontificia Universidad Javeriana, Bogotá (2013)

  21. Ratnayake, R., Hicks, C., Akbari, M.: A SVM based Method to Detect Color Shift Defects in IC Packages. In: APR Conference on Machine Vision Applications. Tokyo, Japan (2007)

  22. Su, L., Shi, T., Xu, Z., Lu, X., Liao, G.: Defect inspection of flip chip solder bumps using an ultrasonic transducer. Sensors (open access). 13, 16281–16291 (2013)

    Article  Google Scholar 

  23. Ruedas, C.: Detección Multiusuario para DS-CDMA basado en SVM [Multiuser Detection for DS-CDMA based on SVM], Dissertation, Universidad de Sevilla

  24. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the multipolar infrared vision (MIVIM) research group at the University of Laval in Quebec, Canada, for providing their facilities to produce the thermal images used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra-Esperanza Nope-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forero-Ramírez, JC., Restrepo-Girón, AD. & Nope-Rodríguez, SE. Detection of Internal Defects in Carbon Fiber Reinforced Plastic Slabs Using Background Thermal Compensation by Filtering and Support Vector Machines. J Nondestruct Eval 38, 33 (2019). https://doi.org/10.1007/s10921-019-0569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0569-6

Keywords

Navigation