Skip to main content
Log in

Wavelet Based Clustering of Acoustic Emission Hits to Characterize Damage Mechanisms in Composites

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Clustering data is an important topic in acoustic emission (AE) health monitoring. Identification of damage mechanisms in composites via AE technique requires an automatic process of classification. In this work, we propose a novel and simple supervised method to discriminate AE signals produced by fracture mechanisms in polymer composites. The novelty of this work is to propose new pertinent descriptors offered by using the continuous wavelet transform, where signals of learning are decomposed and the corresponding wavelet coefficients are calculated. In addition, the entropy criterion is applied to select the most correlated wavelets associated to each failure mechanism. This process allows to establish a filter in the form of vectors for each class of signals and descriptors denote the reconstruction errors calculated by involving the filter associated to each damage mechanism. The k-means algorithm is executed to calculate the center of each class. The technique is applied to AE signals recorded from specific mechanical tests to demonstrate the performance of the proposed descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Johnson, M., Gudmundson, P.: Broadband transient recording and characterization of acoustic emission events in composite laminates. Compos. Sci. Technol. 60, 2803–2818 (2000)

    Article  Google Scholar 

  2. Sause, M.G.R., Muller, T., et al.: Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72, 167–174 (2012)

    Article  Google Scholar 

  3. Aggelis, D.G., Barkoula, N.M., Matikas, T.E., et al.: Acoustic emission monitoring of degradation of cross ply laminates. J. Acoust. Soc. Am. 127(6), EL246–EL251 (2010). https://doi.org/10.1121/1.3425752

    Article  Google Scholar 

  4. Assarar, M., Scida, D., Zouari, W., et al.: Acoustic emission characterization of damage in short-hemp-fiber-reinforced polypropylene composites. Polym. Compos. 37(4), 1101–1112 (2016)

    Article  Google Scholar 

  5. Laksimi, A., Gog, X.L., et al.: Analysis of damage mechanisms in a centrally notched glass-fibre/epoxy plate. Compos. Sci. Technol. 52, 85–91 (1994)

    Article  Google Scholar 

  6. Valentin, D.: A critical analysis of amplitude histograms obtained during acoustic emission tests on unidirectional composites with an epoxy and a PSP matrix. Composites 16(3), 225–230 (1985)

    Article  Google Scholar 

  7. Short, D., Summerscales, J.: Amplitude distribution acoustic emission signatures of unidirectional fibre composite hybrid materials. Composites 15(3), 200–206 (1984)

    Article  Google Scholar 

  8. Zhuang, X., Yan, X.: Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission. Compos. Sci. Technol. 66, 444–449 (2006)

    Article  Google Scholar 

  9. Ramirez-Jimenez, C.R., et al.: Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos. Sci. Technol. 64, 1818–1827 (2006)

    Google Scholar 

  10. Loutas, T.H., Kostopoulos, V.: Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal-processing techniques, Part I: acoustic emission monitoring and damage mechanisms evolution. Compos. Sci. Technol. 69, 265–272 (2009)

    Article  Google Scholar 

  11. Sause, M.G.R., Muller, T., Horoschenkoff, A.: Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos. Sci. Technol. 72, 167–174 (2012)

    Article  Google Scholar 

  12. Morizet, N., Godin, N., et al.: Classification of acoustic emission signals using wavelets and Random Forests, application to localized corrosion. Mech. Syst. Signal Process. 70–71, 1026–1037 (2016)

    Article  Google Scholar 

  13. Ech-Choudany, Y., Assarar, M., Scida, D., et al.: Unsupervised clustering for building a learning database of acoustic emission signals to identify damage mechanisms in unidirectional laminates. Appl. Acoust. 123, 123–132 (2017)

    Article  Google Scholar 

  14. Arumugam, V., et al.: Identification of failure modes in composites from clustered acoustic emission data using pattern recognition and wavelet transformation. Arab. J. Sci. Eng. 38, 1087–1102 (2013)

    Article  Google Scholar 

  15. Refahi Oskouei, A., et al.: Unsupervised acoustic emission data clustering for the analysis of damage mechanisms in glass/polyester composites. Mater. Des. 37, 416–422 (2012)

    Article  Google Scholar 

  16. Jahan, T., Najafabadi, M.A.: Classification of acoustic emission signals collected during tensile tests on unidirectional ultra-high molecular weight polypropylene fiber reinforced epoxy composites using principal component analysis. Russ. J. Nondestruct. Test. 47(7), 79–90 (2011)

    Google Scholar 

  17. Li, L., Swolfs, Y., et al.: Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy composites. J. Compos. Struct. 116, 286–299 (2014)

    Article  Google Scholar 

  18. Godin, N., Huguet, S., Gaertner, R.: Clustering of acoustic emission signals collected during tensile tests on unidirectional glass/polyester composite using supervised and unsupervised classifiers. NDT&E Int. 37, 253–264 (2004)

    Article  Google Scholar 

  19. Gutkin, R., Green, C.J., Vangrattanachai, S., Pinho, S.T., Robinson, P., Curtis, P.T.: On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analysis. Mech. Syst. Signal Process. 25, 1393–1407 (2011)

    Article  Google Scholar 

  20. Ni, Q.-Q., Iwamoto, M.: Wavelet transform of acoustic emission signals in failure of model composites. Eng. Fract. Mech. 69, 717–728 (2002)

    Article  Google Scholar 

  21. Qi, G., Barhorst, A., Hashemi, J.: Kamala G: Discrete wavelet decomposition of acoustic emission signals from carbon-fiber-reinforced composites. Compos. Sci. Technol. 575, 389–403 (1997)

    Article  Google Scholar 

  22. Qi, G.: Wavelet-based AE characterization of composite materials. NDT&E Int. 33(3), 133–144 (2000)

    Article  Google Scholar 

  23. Loutas, T.H., Kostopoulos, V., Ramirez-Jimenez, C., Pharaoh, M.: Damage evolution in center-holed glass/polyester composites under quasi-static loading using time/frequency analysis of acoustic emission monitored waveforms. Compos. Sci. Technol. 66, 1366–1375 (2006)

    Article  Google Scholar 

  24. Velayudham, A., Krishnamurthy, R., Soundarapandian, T.: Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform. Mater. Sci. Eng.: Part A 412, 141–145 (2005)

    Article  Google Scholar 

  25. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38(2), 713–718 (1992)

    Article  Google Scholar 

  26. Abdallah, I., Montrésor, S.: Speech signal detection in noisy environment using a local entropic criterion. In: 5th European Conference on Speech Communication and Technology EUROSPEECH’97, vol. 5, pp. 2595–2598 (1997)

  27. Yadav, J., Sharma, M.: A review of K-mean algorithm. Int. J. Eng. Trends Technol. 4(7), 2972–2976 (2013)

    Google Scholar 

  28. Kohavi, R., Provost, F.: On applied research in machine learning. In: Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, vol. 30, Columbia University, New York (1998)

  29. Wright, J., Allen, Y., et al.: Robust face recognition via sparse representation. IEEE Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  30. Wang, Y., et al.: Robust face recognition via minimum error entropy-based atomic representation. IEEE Image Process. 24(12), 5868–5878 (2015)

    Article  Google Scholar 

  31. Zhang, C., et al.: Image reconstruction for face recognition based on fast ICA. Int. J. Innov. Comput. Inf. Control 4(7), 1723–1732 (2008)

    Google Scholar 

  32. Ativitavas, N., Fowler, T.J., Pothisir, T.: Identification of fiber breakage in fiber reinforced plastic by low-amplitude filtering of acoustic emission data. J. Nondestruct. Eval. 23(1), 21–36 (2004)

    Article  Google Scholar 

  33. Satour, A., Montrésor, S., Bentahar, M.: Sparse representation based approach for acoustic emission signal identification in glass-epoxy composites. In: IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), Brussels, Belgium, pp. 274–278 (2019)

  34. De Groot, P.J., Wijmen, P.: Jaussen, R: Real time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Compos. Sci. Technol. 55, 405–441 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Satour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satour, A., Montrésor, S., Bentahar, M. et al. Wavelet Based Clustering of Acoustic Emission Hits to Characterize Damage Mechanisms in Composites. J Nondestruct Eval 39, 37 (2020). https://doi.org/10.1007/s10921-020-00678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00678-1

Keywords

Navigation