Skip to main content
Log in

Study on Properties of Poly(urethane-ester) Synthesized from Prepolymers of ε-Caprolactone and 2,2-Dimethyl-1,3-Propanediol Monomers and Their Biodegradability

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(urethane-ester) was prepared by polymerization of 4,4′-methylenebis(phenyl isocyanate) (MDI) and prepolymers of ε-caprolactone and 2,2-dimethyl-1,3-propanediol monomers P(CL-DP) with various chain lengths as polyol sources. Characterizations of poly(urethane-ester) were carried out by analysis of functional groups (FTIR), thermal properties (DTA/TGA), mechanical properties (Tensile tester), crystallinity (XRD), and biodegradability. The chain length of prepolymers used in polymerization has a significant effect in properties of poly(urethane-ester) as well as their biodegradability. The formation of poly(urethane-ester) was indicated by the presence of new absorption peaks at wave number of 3,348.2 and 1,596.9 cm−1 for urethane (–NH–) and aromatic groups in chain of polymers, respectively. The increase chain length of prepolymer used in polymerization with 4,4′-methylenebis(phenyl isocyanate) was observed the increase thermal property and crystallinity of poly(urethane-ester). However, the maximum mechanical property and also biodegradability in activated sludge were observed in poly(urethane-ester) prepared by polymerization of 4,4′-methylenebis(phenyl isocyanate) (MDI) and P(CL-DP) prepolymers with DP/CL ratio of 1/20. Apparently, the amorphous parts of polymers are rapidly decomposed by enzymes of microorganisms, so the crystallinity on the whole of poly(urethane-ester) increases after incubation time of 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee JS, Cho YS, Lee JW, Kim HJ, Pyun DG, Park MH, Yoon TR, Lee HJ, Kuroyanagy Y (2001) Trends Biomater Artif Organs 15(1):4–6

    Google Scholar 

  2. Eisenbach CD, Nefzger H (1992) Polyurethanes and related polymers, handbook of polymer synthesis. Marcel Dekker Inc., New York, p 685

    Google Scholar 

  3. Brydson JA (1995) Plastic materials. Butterworth Heinemann Ltd, Oxford, p 756

    Google Scholar 

  4. Chen Z, Zhang R, Kodama M, Nakaya TJ (1999) Biomater Sci Polym Ed. 10(9):901

    Article  CAS  Google Scholar 

  5. Nicholson JW (1997) The chemistry of polymers, 2nd edn. The Royal Society of Chemistry, Cambridge, p 19

    Google Scholar 

  6. Pigott KA (1996) Kirk-Othmer encyclopedia of chemical technology. A Wiley-Interscience Publication-Wiley, New York, pp 21, 58

  7. Degee Ph, Dubois Ph, Jerome R, Teyssie Ph (1992) Macromolecules 25:4242

    Article  CAS  Google Scholar 

  8. Bero M, Kasperczyk J, Adamus G (1993) Macromol Chem 194:907

    Article  CAS  Google Scholar 

  9. Arslan H, Mentes A, Hazer B (2004) J Appl Polym Sci 94:1789

    Article  CAS  Google Scholar 

  10. Haser B (2003) In: Steinbuchel A (ed) Biopolymers, vol 10. Wiley-VCH, Weinheim, p 181

  11. Malin M, Hiljanen-Vainio M, Karjalainen T, Seppala JJ (1996) Appl Polym Sci 59:1289–1298

    Article  CAS  Google Scholar 

  12. Koyama N, Doi Y (1996) Macromolecules 29:5843–5851

    Article  CAS  Google Scholar 

  13. Wang SG, Qiu B (1993) Polym Adv Technol 4:363–366

    Article  Google Scholar 

  14. Arcana IM, Bundjali B, Yudistira I, Jariah B, Sukria L (2007) Polym J 39:1337–1344

    Article  CAS  Google Scholar 

  15. Iwamoto A, Tokiwa Y (1994) J Appl Polym Sci 52:1357–1360

    Article  CAS  Google Scholar 

  16. Arcana IM, Hasan H, Anggraini SD, Febrianti AA, Ardana A (2009) ITB J Sci 41A(2):78–87

    Google Scholar 

  17. Poupi P, Truffatut N, Combourieu B, Besse P, Sancelme M, Veschambre H, Delort AM (1998) Appl Environ Microbiol 64:159–165

    Google Scholar 

  18. Arcana IM, Giani-Beaune O, Schue R, Schue F, Amass W, Amass A (2002) Polym Int 51(10):859–866

    Article  CAS  Google Scholar 

  19. Otera J, Dan-Oh N, Nosaki H (1991) J Org Chem 56:5307

    Article  CAS  Google Scholar 

  20. Rabek JF (1980) Experimental methods in polymer chemistry. Wiley, New York, pp 488–507

    Google Scholar 

  21. Lisuardi A, Schoenber A, Gada M, Gross RA, McCarthy SP (1992) Polym Mater Sci Eng 67:298

    CAS  Google Scholar 

  22. Hori Y, Suzuki M, Takahashi Y, Yamaguchi A, Akutagawa S (1992) Macromolecules 25:5117–5118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support from the Research Grant of Competition Research Program under the Directorate of Higher Education, Department of National Education, the Republic of Indonesia and the Institute for Research—LPPM, Institut Teknologi Bandung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Made Arcana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcana, I.M., Bundjali, B., Hasan, M. et al. Study on Properties of Poly(urethane-ester) Synthesized from Prepolymers of ε-Caprolactone and 2,2-Dimethyl-1,3-Propanediol Monomers and Their Biodegradability. J Polym Environ 18, 188–195 (2010). https://doi.org/10.1007/s10924-010-0189-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0189-9

Keywords

Navigation