Skip to main content
Log in

Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(lactic acid) is one of the most promising biobased and biodegradable polymers for food packaging, an application which requires good mechanical and barrier properties. In order to improve the mechanical properties, in particular the flexibility, PLA plasticization is required. However, plasticization induces generally a decrease in the barrier properties. Acetyl tributyl citrate (ATBC) and poly(ethylene glycol) 300 (PEG), highly recommended as plasticizers for PLA, were added up to 17 wt% in P(D,L)LA. In the case of PEG, a phase separation was observed for plasticizer contents higher than 5 wt%. Contrary to PEG, the Tg decrease due to ATBC addition, modelled with Fox’s law, and the absence of phase separation, up to 17 wt% of plasticizer, confirm the miscibility of PLA and ATBC. Contents equal or higher than 13 wt% of ATBC yielded a substantial improvement of the elongation at break, becoming higher than 300%. The effect of PLA plasticization on the barrier properties was assessed by different molecules, with increasing interaction with the formulated material, such as helium, an inert gas, and oxygen and water vapour. In comparison to the neat sample, barrier properties against helium were maintained when PLA was plasticized with up to 17 wt% of ATBC. The oxygen permeability coefficient and the water vapour transmission rate doubled for mixtures with 17 wt% ATBC in PLA, but increased five-fold in the PEG plasticized samples. This result is most likely caused by increased solubility of oxygen and water in the PEG phase due to their mutual miscibility. To conclude, ATBC increases efficiently the elongation at break of PLA while maintaining the permeability coefficient of helium and keeping the barrier properties against oxygen and water vapour in the same order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plastics Europe, Association of Plastics Manufacturers (PEMRG), http://www.plasticseurope.org/Content/Default.asp?PageName=openfile&DocRef=20081020-002 (06/2010)

  2. European bioplastics, http://www.european-bioplastics.org (06/2010)

  3. Bogaert JC, Coszach P (2000) Macromol Symp 153:287

    Article  CAS  Google Scholar 

  4. Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Food Addit Contam 19:172

    Article  CAS  Google Scholar 

  5. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Trends Food SciTechnol 19: 634

    Google Scholar 

  6. Martin O, Averous L (2001) Polymer 42:6209

    Article  CAS  Google Scholar 

  7. Ljungberg N, Wesslén B (2002) J Appl Polym Sci 86:1227

    Article  CAS  Google Scholar 

  8. Ljungberg N, Wesslén B (2004) J Appl Polym Sci 94:2140

    Article  CAS  Google Scholar 

  9. Pillin I, Montrelay N, Grohens Y (2006) Polymer 47:4676

    Article  CAS  Google Scholar 

  10. Martino VP, Ruseckaite RA, Jimenez A (2006) J Therm Anal Cal 86:707

    Article  CAS  Google Scholar 

  11. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E (2003) J Appl Polym Sci 90:1731

    Article  CAS  Google Scholar 

  12. Labrecque L, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66: 1507

    Google Scholar 

  13. Ljungberg N, Wesslén B (2005) Biomacromol 6:1789

    Article  CAS  Google Scholar 

  14. European Food Safety Authority, http://www.efsa.europa.eu/en/efsajournal/doc/afc_op_ej273_10thlist_rev_en1,7.pdf (02/2010)

  15. Colomines G, Domenek S, Guinault A, Courgneau C, Ducruet V (2010) Polym Int 59:818

    Article  CAS  Google Scholar 

  16. Auras RA, Singh SP, Singh JJ (2005) Packag Technol Sci 18:207

    Article  CAS  Google Scholar 

  17. Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New York. pp 675–714

  18. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Polymer 47:7178

    Article  CAS  Google Scholar 

  19. Pluta M (2004) Polymer 45:8239

    Article  CAS  Google Scholar 

  20. Murariu M, Da Silva Ferreira A, Alexandre M, Dubois P (2008) Polym Adv Technol 19:636

    Article  CAS  Google Scholar 

  21. Lim LT, Auras RA, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  22. Signori F, Coltelli M-B, Bronco D (2009) Polym Degrad Stab 94:74

    Article  CAS  Google Scholar 

  23. Hyon S-H, Jamshidi K, Ikada Y (1998) Polym Int 46: 196

    Google Scholar 

  24. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  25. Solarski S, Ferreira M, Devaux E (2005) Polymer 46:11187

    Article  CAS  Google Scholar 

  26. Pyda M, Wunderlich B (2005) Macromolecules 38:10472

    Article  CAS  Google Scholar 

  27. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Biomacromol 7:2128

    Article  CAS  Google Scholar 

  28. Ljungberg N, Wesslén B (2003) Polymer 44:7679

    Article  CAS  Google Scholar 

  29. Deng K, Felorzabihi N, Winnik MA, Jiang Z, Yin Z, Yaneff PV, Ryntz RA (2009) Polym Adv Technol 20:235

    Article  CAS  Google Scholar 

  30. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  31. Nielsen LE, Landel RF (1994) Stress strain behavior and strength (chap. 5). In: Faulkner LL (ed) Mechanical properties of polymers and composites, 2nd edn. Marcel Decker Inc, New York, pp 265–267

    Google Scholar 

  32. Bao L, Dorgan JR, Knauss D, Hait S, Oliviera NS, Maruccho IM (2006) J Membr Sci 285:166

    Article  CAS  Google Scholar 

  33. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheet 23:133

    Article  CAS  Google Scholar 

  34. McGonigle EA, Liggat JJ, Pethrick RA, Jenkins SD, Daly JH, Hayward D (2001) Polymer 42:2413

    Article  CAS  Google Scholar 

  35. Ahn J, Chung W-J, Pinnau I, Guiver MD (2008) J Membr Sci 314:123

    Article  CAS  Google Scholar 

  36. Jang J, Lee DK (2004) Polymer 45:1599

    Article  CAS  Google Scholar 

  37. Martino VP, Jiménez A, Ruseckaite RA (2009) J Appl Polym Sci 112:2010

    Article  CAS  Google Scholar 

  38. DeLassus PT (1994) Sorption and diffusion of flavors in plastic packaging. In: Mc Gorrin RJ, Leland JV (eds) Flavor-food interactions. ACS Symposium Series, Washington DC, pp 152–161

    Google Scholar 

  39. Petersen K, Nielsen PV, Olsen MB (2001) Starch/Stärke 53:356

    Article  CAS  Google Scholar 

  40. Laohakunjit N, Noomhorm A (2004) Starch/Stärke 56:348

    Article  CAS  Google Scholar 

  41. Coltelli M-B, Maggiore ID, Bertoldo M, Signori F, Bronco S, Ciardelli F (2008) J Appl Polym Sci 110:1250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Domenek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courgneau, C., Domenek, S., Guinault, A. et al. Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). J Polym Environ 19, 362–371 (2011). https://doi.org/10.1007/s10924-011-0285-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-011-0285-5

Keywords

Navigation