Skip to main content

Advertisement

Log in

Grafting of Glycidyl Methacrylate onto Poly(lactide) and Properties of PLA/Starch Blends Compatibilized by the Grafted Copolymer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(lactide)-graft-glycidyl methacrylate (PLA-g-GMA) copolymer was prepared by grafting GMA onto PLA in a batch mixer using benzoyl peroxide as an initiator. The graft content was determined with the 1H-NMR spectroscopy by calculating the relative area of the characteristic peaks of PLA and GMA. The result shows that the graft content increases from 1.8 to 11.0 wt% as the GMA concentration in the feed varies from 5 to 20 wt%. The PLA/starch blends were prepared by the PLA-g-GMA copolymer as a compatibilizer, and the structure and properties of PLA/starch blends with or without the PLA-g-GMA copolymer were characterized by SEM, DSC, tensile test and medium resistance test. The result shows that the PLA/starch blends without the PLA-g-GMA copolymer show a poor interfacial adhesion and the starch granules are clearly observed, nevertheless the starch granules are better dispersed and covered by PLA when the PLA-g-GMA copolymer as a compatibilizer. The mechanical properties of the PLA/starch blends with the PLA-g-GMA copolymer are obviously improved, such as tensile strength at break increasing from 18.6 ± 3.8 MPa to 29.3 ± 5.8 MPa, tensile modulus from 510 ± 62 MPa to 901 ± 62 MPa and elongation at break from 1.8 ± 0.4 % to 3.4 ± 0.6 %, respectively, for without the PLA-g-GMA copolymer. In addition, the medium resistance of PLA/starch blends with the PLA-g-GMA copolymer was much better than PLA/starch blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohanty A, Misra M, Drzal L (2002) J Polym Environ 10:19

    Article  CAS  Google Scholar 

  2. Kim CH, Cho K, Park JK (2001) Polymer 42:5135

    Article  CAS  Google Scholar 

  3. Lu Y, Tighzert L, Dole P, Erre D (2005) Polymer 46:9863

    Article  CAS  Google Scholar 

  4. Zhai M, Yoshii F, Kume T, Hashim K (2002) Carbohydr Polym 50:295

    Article  CAS  Google Scholar 

  5. Shogren R, Doane W, Garlotta D, Lawton J, Willett J (2003) Polym Degrad Stab 79:405

    Article  CAS  Google Scholar 

  6. Jun CL (2000) J Polym Environ 8:33

    Article  Google Scholar 

  7. Schwach E, Averous L (2004) Polym Int 53:2115

    Article  CAS  Google Scholar 

  8. Garlotta D, Doane W, Shogren R, Lawton J, Willett JL (2003) J Appl Polym Sci 88:1775

    Article  CAS  Google Scholar 

  9. Garlotta D (2001) J Polym Environ 9:63

    Article  CAS  Google Scholar 

  10. Wang N, Yu J, Ma X (2007) Polym Int 56:1440

    Article  CAS  Google Scholar 

  11. Wang N, Yu J, Chang PR, Ma X (2008) Carbohydr Polym 71:109

    Article  CAS  Google Scholar 

  12. Yu L, Petinakis E, Dean K, Liu HS, Yuan QA (2011) J Appl Polym Sci 119:2189

    Article  CAS  Google Scholar 

  13. Chen L, Qiu X, Deng M, Hong Z, Luo R, Chen X, Jing X (2005) Polymer 46:5723

    Article  CAS  Google Scholar 

  14. Wang H, Sun X, Seib P (2001) J Appl Polym Sci 82:1761

    Article  CAS  Google Scholar 

  15. Zhang JF, Sun X (2004) Biomacromolecules 5:1446

    Article  CAS  Google Scholar 

  16. John J, Tang J, Yang Z, Bhattacharya M (1997) J Polym Sci, Part A: Polym Chem 35:1139

    Article  CAS  Google Scholar 

  17. John J, Tang J, Bhattacharya M (1998) Polymer 39:2883

    Article  CAS  Google Scholar 

  18. Shi QF, Chen C, Gao L, Jiao L, Xu HY, Guo WH (2011) Polym Degrad Stab 96:175

    Article  CAS  Google Scholar 

  19. Chen L, Qiu X, Xie Z, Hong Z, Sun J, Chen X, Jing X (2006) Carbohydr Polym 65:75

    Article  CAS  Google Scholar 

  20. Huang J, Lisowski MS, Runt J, Hall ES, Kean RT (1998) Macromolecules 31:2593

    Article  CAS  Google Scholar 

  21. Matyjaszewski K, Coca S, Jasieczek CB (1997) Macromol Chem Phys 198:4011

    Article  CAS  Google Scholar 

  22. Jeong BJ, Xanthos M (2007) Polym Eng Sci 47:244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Docking Project of Nanping Industry Development of Wuyi University (N2011WZ05, 2011DJ10), the A Project of Fujian Province Education Department (JA11263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshao Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Jiang, H. & Chen, L. Grafting of Glycidyl Methacrylate onto Poly(lactide) and Properties of PLA/Starch Blends Compatibilized by the Grafted Copolymer. J Polym Environ 20, 810–816 (2012). https://doi.org/10.1007/s10924-012-0438-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0438-1

Keywords

Navigation