Skip to main content
Log in

Investigation of Polypropylene-Montmorillonite Clay Nanocomposite Films Containing a Pro-degradant Additive

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This paper investigates the performance of polypropylene (PP) incorporated with montmorillonite (MMT) nanoclay, maleic anhydride grafted PP (PP-g-MAH), and pro-degradant additive (TDPA®), which provides additional benefits of increasing biodegradability. A twin-screw extruder was used to compound PP, MMT, PP-g-MAH, and TDPA, and the extruded nanocomposite films were collected for testing, and their mechanical, thermal, barrier, oxo-biodegradability, and morphological properties were evaluated. Tensile test, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), oxygen permeability test, soil burial test, X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscope (SEM) analysis were used to investigate these properties. Increasing MMT content from 1 to 3 phr increases tensile strength and Young’s modulus of the neat PP samples up to ca.45% and 27% respectively. Improvement of thermal properties for neat PP samples was observed by increasing MMT content from 1 to 3 phr. However, at 4 phr MMT content, both mechanical and thermal properties of nanocomposites dropped slightly. For soil buried samples, DSC and TGA results revealed significant changes in the thermal properties for PP samples containing TDPE additive compared to neat PP, clearly confirming the effectiveness of this TDPA additive in promoting oxo-biodegradation process of PP. Similarly weight loss evaluation result shows that about 4% weight loss for sample (PP/TD), which is PP and TDPA blend only, compared to neat PP. However, increasing MMT content from 1 to 4 phr slightly reduced weight loss of PP from 3.5 to 1.5%, respectively, for 6 month soil exposure period, which indicates that increasing MMT content was detrimental to the degradation process. For higher MMT content, the oxygen permeability of PP nanocomposites was decreased by 46% of the corresponding values for neat PP. The XRD and TEM results confirmed the exfoliation structure of the nanocomposites. The morphological change after soil burial test was studied using scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paul DR, Robeson LM (2008) Polymer nanotechnology: Nanocomposites. Polymer 49(15):3187–3204

    Article  CAS  Google Scholar 

  2. Ciardelli F, Coiai S, Passaglia E, Pucci A, Ruggeri G (2008). Nanocomposites based on polyolefins and functional thermoplastic materials. Polym Int 57 (6): 805–836.

    Article  CAS  Google Scholar 

  3. Pettarin V, Brun F, Viana JC, Pouzada AS, Frontini PM (2013) Toughness distribution in complex PP/nanoclay injection mouldings. Compos Sci Technol 74:28–36

    Article  CAS  Google Scholar 

  4. Dehaghani HE, Barikani M, Khonakdar HA, Jafari SH, Wagenknechy U, Heinrich G (2015) On O2 gas permeability of PP/PLA/clay nanocomposites: A molecular dynamic simulation approach. Polym Test 45:139–151

    Article  Google Scholar 

  5. Pluta M, Piorkowska E (2015) Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 41:209–218

    Article  CAS  Google Scholar 

  6. Gooddarzi V, Jafari SH, Khonahdar HA, Ghalei B, Morttazavi M (2013) Assessment of role of morphology in gas permselectivity of membranes based on polypropylene/ethylene vinyl acetate/clay nanocomposite. J Membr Sci 445:76–87

    Article  Google Scholar 

  7. Shields RJ, Bhattacharya D, Fakirov S (2008). Oxygen permeability analysis of microfibril reinforced composites from PE/PET blends. Composites A 39: 940–949.

    Article  Google Scholar 

  8. Farsani RE, Khalili SHR, Hedayatnasab Z, Soleimani N (2014). Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene-clay nanocomposites. Mater Des, 53: 540–549.

    Article  Google Scholar 

  9. Fuad MYA, Hanim H, Zarina R, Ishak ZAM, Hassan A (2010). Polypropylene/calcium carbonate nanocomposites-effects of processing techniques and maleated polypropylene compatibiliser. Express Polym Lett 4 (10): 611–620.

    Article  CAS  Google Scholar 

  10. An JE, Jeon GW, Jeong YG (2012). Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fibers Polym 13 (4): 507–514.

    Article  CAS  Google Scholar 

  11. Komatsu LGH, Oliani WL, Lugao AB, Parra DF (2014). Environmental ageing of irradiated polypropylene/montmorillonite nanocomposites ontained in molten state. Radiat Phys Chem 97: 233–238.

    Article  CAS  Google Scholar 

  12. Yuan Q, Misra RDK (2006) Impact behaviour of clay reinfornced polypropylene nanocomposites. Polymer 47:4421–4433

    Article  CAS  Google Scholar 

  13. Saminathan K, Selvakumar P, Bhatnagar N (2008) Fracture studies of polypropylene/nanoclay composite. Part I: Effect of loading rates on essential work of fracture. Polym Test 27:296–307

    Article  CAS  Google Scholar 

  14. Eslami FR, Hedayatnasab Z, Khalili SM, Soleimani N. (2012). Mechanical characterization of nanoclay reinforced polypopylene composites at high temperature subjected to tensile loads. Adv Mater Res, 488–489: 567–5671.

    Google Scholar 

  15. Nguyen QT, Baird DG (2006). Preparation of polymer-clay nanocomposites and their properties. Adv Polym Technol 25 (4): 270–285.

    Article  CAS  Google Scholar 

  16. Hambir S, Bulakh N, Jog JP (2002) Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behaviour. Polym Eng Sci42(9):1801–1807

    Article  Google Scholar 

  17. Liborio P, Oliveira VO, Marques MDF (2015) New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation. Appl Clay Sci 111:44–49

    Article  CAS  Google Scholar 

  18. Sharma SK, Nayak SK (2009). Surface modified clay/polypropylene (PP) nanocomposites: Effect on physico-mechanical, thermal and morphological properties. Polym Degrad Stab 94: 132–138.

    Article  CAS  Google Scholar 

  19. Fitaroni LB, Lima JAD, Cruz SA, Waldman WR (2015). Thermal stability of polypropylene – montmorillonite clay nanocomposites: Limitation of the thermogravimetric analysis. Polym Degrad Stab 111: 102–108.

    Article  CAS  Google Scholar 

  20. Al-Malaika S, Sheena H, Fischer D, Masarati E (2013). Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocomposites. Polym Degrad Stab 98: 2400–2410.

    Article  CAS  Google Scholar 

  21. Hu D, Chen J, Zhao L, Liu T (2015) Melting and non-isothrmal crystallization behaviours of polypropylene and polypropylene/montmorillonite nanocomposites under pressurized carbon dioxide. Thermochim Acta 617:65–75

    Article  CAS  Google Scholar 

  22. Mans R, Huang CT, Quintela A, Rocha F, Detellier C (2015) Preparation and characterization of novel clay/PLA nanocomposites. Appl Clay Sci 115:87–96

    Article  Google Scholar 

  23. Raquez JM, Habibi Y, Murariu M, Dubois P (2013). Polylactic (PLA) based nanocomposites. Prog Polym Sci 38 (10–11): 1504–1542.

    Article  CAS  Google Scholar 

  24. Balakrishnan H, Masoumi I, Yussuf AA, Imran M, Hassan A, Wahit MU (2012). Ethylene copolymer toughened polylactic acid nanocomposites. Polym-Plast Technol Eng 51: 19–27.

    Article  CAS  Google Scholar 

  25. Pisano C, Figiel L (2013) Modelling of morphology evolution and macroscopic behaviour of intercalated PET-clay nanocomposites during semi-solid state processing. Compos Sci Technol 75:35–41

    Article  CAS  Google Scholar 

  26. Yang F, manitium M, Kriegel R, Kannan RM (2014) Stucture, permeability, and rheology of supercritical CO2 dispersed polystyrene-clay nanocomposites. Polymer 55:3915–3924

    Article  CAS  Google Scholar 

  27. Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z (2003). Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stab 82: 127–131.

    Article  CAS  Google Scholar 

  28. Silvano JR, Rodrigues SA, Marini J, Brestas RES, Canevarolo SV, Carvalho BM, Pinheiro LA (2013). Effect of reprocessing and clay concentration on the degradation of polypropylene/montmorillonite nanocomposites during twin screw. Polym Degrad Stab 98: 801–808.

    Article  CAS  Google Scholar 

  29. Baniasadi H, Ramazani ASA, Nikkhah SJ (2010). Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des 31: 76–84.

    Article  CAS  Google Scholar 

  30. Chen J, Yu Y, Chen J, Li H, Liu D (2015). Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites. Appl Clay Sci 115: 230–237.

    Article  CAS  Google Scholar 

  31. Salehiyan R, Yussuf AA, Hanani NF, Hassan A, Akhbari A (2015) Polylactic acid/polycaprolactone nanocomposite: Influence of montmorillonite on mechanical, thermal, and morphological properties. J Elast Plast 47(1):69–87

    Article  CAS  Google Scholar 

  32. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011). An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36: 1015–1049.

    Article  CAS  Google Scholar 

  33. Ojeda TFM, Dalmolin E, Forte MMC, Jacques RJS, Bento FM, Camargo FAO (2009). Abiotic and biotic degradation of oxo-biodegradable polyethylene. Polym Degrad Stab 94: 965–970.

    Article  CAS  Google Scholar 

  34. Husarova L, Machovsky GP, Houser J, Koutny M (2010). Aerobic biodegradation of calcium carbonate filled polyethyelene film containing pro-oxidant additives. Polym Degrad Stab 95: 1794–1799.

    Article  CAS  Google Scholar 

  35. Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008). Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93: 1917–1922.

    Article  CAS  Google Scholar 

  36. Montagna LS, Forte MMC, Santana RMC (2013) Induced degradation of polypropylene with an organic pro-degradant additive. J Mater Sci Eng A3(2):123–131

    Google Scholar 

  37. Contat-Rodrigo L (2013). Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stab 98: 2117–2124.

    Article  CAS  Google Scholar 

  38. Karian HG (2003) Handbook of polypropylene and polypropylene composites. Marcel Dekker, New York

    Book  Google Scholar 

  39. Osman MA, Atallah A (2004). High density polyethyelene micro- and nanocomposites: effect of particle shape, size, and surface treatment on polymer crystallinity and gas permeability. Macro Rap Comm 25: 1540–1544.

    Article  CAS  Google Scholar 

  40. Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Properties of polypropylene and polypropylene/poly(ethylene-co-vinyl alcohol) blend/CNC nanocomposites. Compos Sci Technol 117:357–363

    Article  CAS  Google Scholar 

  41. Rosa DS, Bardi MAG, Calil MR, Guedes CGF, Ramires EC, Frollini E (2009) Mechanical, thermal and morphological characterization of polypropylene/biodegradable blends with additives. Polym Test 28(8):836–842

    Article  CAS  Google Scholar 

  42. Chen L, Wong SC, Pisharath S (2003) Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 88:3298–3305

    Article  CAS  Google Scholar 

  43. Selvakumar V, Palanikumar K, Palanivelu K (2010) Studies on mechanical characterization of polypropylene/Na-MMT nanocomposites. J Min Mater Charac Eng 9(8):671–681

    Google Scholar 

  44. Chung YL, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai HM (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79:391–396

    Article  CAS  Google Scholar 

  45. Bagheri-Kazemabad S, Fox D, Chen Y, Geever LM, Khavandi A, Bagheri R, Higginbotham CL, Zhang H, Chen B (2012) Morphology, rheology and mechanical properties of polypropylene/ethylene-octene copolymer/clay nanocomposites: effects of the compatibilizer. Compos Sci Technol 72:1697–1704

    Article  CAS  Google Scholar 

  46. Fechine GJM, Rosa DS, Rezende ME, Demarquette NR (2009) Effect of UV radiation and pro-oxidant on polyethyelene biodegradability. Polym Eng Sci 49:123–128

    Article  CAS  Google Scholar 

  47. Lee SY, Kang IA, Doh GH, Kim JS, Yoon HG, Wu Q (2008). Thermal, mechanical and morphological properties of polypropylene/clay/wood flour nanocomposies. Express Polym Lett 2 (2): 78–87.

    Article  CAS  Google Scholar 

  48. Baniasadi H, Ramazani SA, Nikkhah SJ (2010). Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des 31: 76–84.

    Article  CAS  Google Scholar 

  49. Prasad KH, Kumar MS (2011) Thermal characterization of PP/NA-MMT composite materials. J Mater Sci Eng 5:80–86

    Google Scholar 

  50. Sinha RS, Bousima M (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progr Mater Sci 50: 962–1079.

    Article  Google Scholar 

  51. Yussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429

    Article  CAS  Google Scholar 

  52. Chuayjuljit S, Hosililak S, Athisart A (2009) Thermoplastic cassava starch/sorbitol-modified montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. J Metal Mater Miner 19(1):59–65

    CAS  Google Scholar 

  53. Heydari A, Alemzadeh I, Vossoughi M (2014). Influence of glycerol and clay contents on biodegradability of corn starch nanocomposites. Inter J Eng 27 (2): 203–214.

    CAS  Google Scholar 

  54. Avella M, Cosco S, Di Lorenzo M, Di Pace E, Gentile G, Errico M (2006). iPP based nanocomposites filled with calcium carbonate nanoparticles: structure/properties relationships. Macromole Sympos 234 :156–162.

    Article  CAS  Google Scholar 

  55. Faisant J, Ait-Kadir A, Bousmina M, Deschenes L (1998) Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 3–9:533–545

    Article  Google Scholar 

  56. Sinha RS, Okamoto M (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progr Polym Sci 28(11): 1539–1642.

    Article  Google Scholar 

  57. Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Abdul Razak SB (2010). Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31: 3289–3298.

    Article  CAS  Google Scholar 

  58. Montagna LS, Catto AL, Forte MMC, Santana RMC (2016). Biodegradation of PP films modified with organic pro-degradant: natural ageing and biodegradation in soil in respirometric test. Polyolefins J 3 (1): 59–68.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kuwait Institute for Scientific Research (KISR) for providing the grant (project PC014K) that has made this research work possible. The authors also would like to express gratitute to Prof. Dr. AbdelMageed Safer, Miss Ahlam Al Kadi and Miss Nisha Philip from Kuwait University, Faculty of Science at Nanoscopy Science Center for providing TEM facility to analysize our nanocomposite samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Yussuf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yussuf, A.A., Al-Saleh, M.A., Al-Samhan, M.M. et al. Investigation of Polypropylene-Montmorillonite Clay Nanocomposite Films Containing a Pro-degradant Additive. J Polym Environ 26, 275–290 (2018). https://doi.org/10.1007/s10924-017-0946-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-0946-0

Keywords

Navigation