Skip to main content
Log in

Multiple Reprocessing Cycles of Corn Starch-Based Biocomposites Reinforced with Curauá Fiber

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biocomposites with a corn starch-based biodegradable polymer as matrix and 10 wt% vegetable curauá fiber were processed by injection molding and were submitted to reprocessing up to ten cycles with or without 3 wt% of maleic anhydride grafted polypropylene as coupling agent. The effect of reprocessing on hardness, impact and tensile properties as well as on the morphology, thermal properties, chemical structure and soil degradation behaviour of the matrix and biocomposites was evaluated. Curauá fibers have increased hardness, impact and tensile strengths as well as increased tensile modulus and decreased elongation at break of the biocomposites with respect to starch-based matrix and these properties slightly decreased or no considerable changes were observed with the reprocessing cycle increase. The addition of coupling agent promoted an increase in all properties and they remained almost constant with the reprocessing cycle increase. Thus, the incorporation of curauá fiber within starch-based matrix can improve the mechanical properties of the biocomposites which showed potential to be recycled despite the weight loss in soil degradation tests reached around 10 wt% after 230 days for biocomposites reprocessed ten cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gujar S, Pandel B, Jethoo AS (2014) Effect of plasticizer on mechanical and moisture absorption properties of eco-friendly corn starch-based bioplastic. Nat Environ Pollut Technol 13(2):425–428

    Google Scholar 

  2. Ahmed J, Tiwari BK, Imam SH, Rao MA (eds) (2012) Starch-based polymeric materials and nanocomposites: chemistry, processing and applications. Taylor & Francis Group, Boca Raton, p VB

    Google Scholar 

  3. Pedroso AG, Rosa DS (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59(1):1–9

    Article  CAS  Google Scholar 

  4. Liu L, Yu Y, Song P (2013) Improved mechanical and thermal properties of polypropylene blends based on diethanolamine-plasticized corn starch via in situ reactive compatibilization. Ind Eng Chem Res 52:16232–16238

    Article  CAS  Google Scholar 

  5. Vieyra H, Aguilar-Méndez MA, San Martín-Martínez E (2013) Study of biodegradation evolution during composting of polyethylene–starch blends using scanning electron microscopy. J Appl Polym Sci 127(2):845–853

    Article  CAS  Google Scholar 

  6. Peres AM, Pires RR, Oréfice RL (2016) Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohyd Polym 136(20):210–215

    Article  CAS  Google Scholar 

  7. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B 42(4):856–873

    Article  CAS  Google Scholar 

  8. Sain S, Sengupta S, Kar A, Mukhopadhyay A, Sengupta S, Kar T, Ray D (2014) Effect of modified cellulose fibers on the biodegradation behaviour of in-situ formed PMMA/cellulose composites in soil environment: Isolation and identification of the composite degrading fungus. Polym Degrad Stab 99:156–165

    Article  CAS  Google Scholar 

  9. Lee HV, Hamid BA, Zain SK (2014) Review article—conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20. https://doi.org/10.1155/2014/631013

    Article  CAS  Google Scholar 

  10. Ochi S (2006) Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos A 37:1879–1883

    Article  CAS  Google Scholar 

  11. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polymer J 49:2839–2858

    Article  CAS  Google Scholar 

  12. Lopez JP, Girones J, Mendez JA, Puig J, Pelach MA (2012) Recycling ability of biodegradable matrices and their cellulose-reinforced composites in a plastic recycling stream. J Polym Environ 20:96–103

    Article  CAS  Google Scholar 

  13. Le Duigou A, Pillin I, Bourmaud A, Davies P, Baley C (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly(Llactide) composites. Compos A 39(9):1471–1478

    Article  CAS  Google Scholar 

  14. Drabek J, Zatloukal M (2016) Evaluation of thermally induced degradation of branched polypropylene by using rheology and different constitutive equations. Polymers 8(9):317–326

    Article  CAS  Google Scholar 

  15. La Mantia FP, Morreale M, Botta L, Mistretta MC, Ceraulo M, Scaffar R (2017) Degradation of polymer blends: a brief review. Polym Degrad Stab 145:79–92

    Article  CAS  Google Scholar 

  16. Ramesh V, Mohanty S, Biswal M, Nayak SK (2015) Effect of reprocessing and accelerated weathering on impact-modified recycled blend. J Mater Eng Perform 24(12):5046–5053

    Article  CAS  Google Scholar 

  17. Soccalingame L, Bourmaud A, Perrin D, Bénézet J-C, Bergeret A (2015) Reprocessing of wood flour reinforced polypropylene composites: impact of particle size and coupling agent on composite and particle properties. Polym Degrad Stab 113:72–85

    Article  CAS  Google Scholar 

  18. Gardette M, Thérias S, Gardette J-L, Janecska T, Földes E, Pukánszky B (2013) Photo- and thermal oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content. Polym Degrad Stab 98(11):2383–2390

    Article  CAS  Google Scholar 

  19. Pedroso AG, Rosa DS (2005) Effects of the compatibilizer PE-g-GMA on the mechanical, thermal and morphological properties of virgin and reprocessed LDPE/corn starch blends. Polym Adv Technol 16:310–317

    Article  CAS  Google Scholar 

  20. Peres AM, Pires RR, Oréfice RL (2016) Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohyd Polym 136:210–215

    Article  CAS  Google Scholar 

  21. Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397(7):2693–2701

    Article  CAS  PubMed  Google Scholar 

  22. Al-Mulla A, Alfadhel K, Qambar G, Shaban H (2013) Rheological study of recycled polypropylene–starch blends. Polym Bull 70:2599–2618

    Article  CAS  Google Scholar 

  23. Spinacé MAS, Lambert CS, Fermoselli KKG, De Paoli M-A (2009) Characterization of lignocellulosic curaua fibers. Carbohyd Polym 77:47–53

    Article  CAS  Google Scholar 

  24. Wang SJ, Yu JG, Yu JL (2005) Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polym Degrad Stab 87:395–401

    Article  CAS  Google Scholar 

  25. Soccalingame L, Perrin D, Benezet J-C, Mani S, Coiffier F, Richaud E, Bergeret (2015) A reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polym Degrad Stab 120:313–327

    Article  CAS  Google Scholar 

  26. Hanafi I, Zaaba NF (2012) The mechanical properties, water resistance and degradation behaviour of silica-filled sago starch/PVA plastic films. J Elastomers Plast 46(1):96–109

    Google Scholar 

  27. Yaacob ND, Hanafi I, Ting SS (2016) Soil burial of polylactic acid/paddy straw powder biocomposite. Bioresources 11(1):1255–1269

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to National Counsel of Technological and Scientific Development (CNPq), Foundation for Research Support of the State of Rio Grande do Sul (Fapergs) and ULBRA Foundation (FULBRA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Maria Lenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, D.M., Tedesco, D.M., Camani, P.H. et al. Multiple Reprocessing Cycles of Corn Starch-Based Biocomposites Reinforced with Curauá Fiber. J Polym Environ 26, 3005–3016 (2018). https://doi.org/10.1007/s10924-018-1179-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1179-6

Keywords

Navigation