Skip to main content
Log in

Rheology, Mechanical Properties and Morphology of Poly(lactic acid)/Ethylene Vinyl Acetate Blends

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the effect of ethylene vinyl acetate (EVA) content on the rheology, mechanical properties, and morphology of poly (lactic acid) (PLA)/EVA blends was investigated. Differential Scanning Calorimetry (DSC) showed that the addition of EVA to PLA decreased the degree of crystallinity of PLA. Dynamic Mechanical Thermal Analysis (DMTA) results showed that the presence of EVA copolymer increased the cold crystallization temperature (Tcc) of PLA. The addition of 10% of EVA to PLA substantially increased the impact strength. Morphology analysis by Scanning Electron Microscopy (SEM) indicated the immiscibility between PLA and EVA phases and an in increase the EVA average dispersed phase domains size with the increase in EVA content. Rheological measurements under oscillatory shear flow showed that storage modulus (G′) increased with the increase in the EVA content at low frequencies and is related to the increase in the EVA dispersed phase domains size, as also observed by relaxation spectrum analysis. Cole–Cole plots of imaginary viscosity (η″) versus real viscosity (η′) and Han plots of storage modulus (G′) versus loss modulus (G″) indicated that PLA and EVA phases are immiscible, as also observed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Foruzanmehr M, Vuillaume PY, Elkoun S, Robert M (2016) Mater Des 106:295

    Article  CAS  Google Scholar 

  2. Lee JY, Kwon SH, Chin I-J, Choi HJ (2019) Polym Bull

  3. Sangeetha VH, Deka H, Varghese TO, Nayak SK (2018) Polym Compos 39:81

    Article  CAS  Google Scholar 

  4. Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Mater Des 139:188

    Article  CAS  Google Scholar 

  5. Iwata T (2015) Angew Chem Int Ed Engl 54:3210

    Article  CAS  PubMed  Google Scholar 

  6. Nakajima H, Dijkstra P, Loos K (2017) Polymers 9:1

    Article  CAS  Google Scholar 

  7. Imre B, Pukánszky B (2013) Eur Polym J 49:1215

    Article  CAS  Google Scholar 

  8. Webb H, Arnott J, Crawford R, Ivanova E (2012) Polymers 5:1

    Article  CAS  Google Scholar 

  9. Satti SM, Shah AA, Marsh TL, Auras R (2018) J Polym Environ 26:3848

    Article  CAS  Google Scholar 

  10. Jalali A, Huneault MA, Elkoun S (2016) J Mater Sci 51:7768

    Article  CAS  Google Scholar 

  11. Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820

    Article  CAS  Google Scholar 

  12. Chow WS, Teoh EL, Karger-Kocsis J (2018) Express Polym Lett 12:396

    Article  CAS  Google Scholar 

  13. Jing M, Sui G, Zhao J, Zhang Q, Fu Q (2019) Compos Part A 117:219

    Article  CAS  Google Scholar 

  14. Kakroodi AR, Kazemi Y, Nofar M, Park CB (2017) Chem Eng J 308:772

    Article  CAS  Google Scholar 

  15. Chuayjuljit S, Wongwaiwattanakul C, Chaiwutthinan P, Prasassarakich P (2017) Polym Compos 38:2841

    Article  CAS  Google Scholar 

  16. Brito GF, Agrawal P, Araújo EM, Mélo TJA (2012) Polímeros 22:427

    Article  CAS  Google Scholar 

  17. Gug J, Sobkowicz MJ (2016) J Appl Polym Sci 133:43350

    Article  CAS  Google Scholar 

  18. Zhao H, Zhao G (2016) J Mech Behav Biomed Mater 53:59

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Pang S, Xu N, Pan L, Lin Q (2016) J Appl Polym Sci 133:43424

    Google Scholar 

  20. de Araújo JP, Silva RC, Lima JCC, Agrawal P, de Mélo TJA (2016) Macromol Symp 367:82

    Article  CAS  Google Scholar 

  21. Zhang N, Wang Q, Ren J, Wang L (2008) J Mater Sci 44:250

    Article  CAS  Google Scholar 

  22. D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Polym Test 49:22

    Article  CAS  Google Scholar 

  23. Gerard T, Budtova T (2012) Eur Polym J 48:1110

    Article  CAS  Google Scholar 

  24. Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Polym Bull 72:2931

    Article  CAS  Google Scholar 

  25. Luyt AS, Gasmi S (2016) J Mater Sci 51:4670

    Article  CAS  Google Scholar 

  26. Liu Y, Cao K, Karpova S, Olkhov A, Filatova A, Zhulkina A, Burkov A, Fomin SV, Rosa DS, Iordanskii AL (2018) Macromol Symp 381:1800130

    Article  CAS  Google Scholar 

  27. Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G (2015) Mater Des 88:1277

    Article  CAS  Google Scholar 

  28. Sangeetha VH, Valapa RB, Nayak SK, Varghese TO (2018) J Polym Environ 26:1

    Article  CAS  Google Scholar 

  29. Moura I, Botelho G, Machado AV (2013) J Polym Environ 22:148

    Article  CAS  Google Scholar 

  30. Singla RK, Zafar MT, Maiti SN, Ghosh AK (2017) Polym Test 63:398

    Article  CAS  Google Scholar 

  31. Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Eur Polym J 48:146

    Article  CAS  Google Scholar 

  32. Srithep Y, Nealey P, Turng L-S (2013) Polym Eng Sci 53:580

    Article  CAS  Google Scholar 

  33. Faker M, Razavi Aghjeh MK, Ghaffari M, Seyyedi SA (2008) Eur Polym J 44:1834

    Article  CAS  Google Scholar 

  34. John B, Varughese KT, Oommen Z, Thomas S (2010) Polym Eng Sci 50:665

    Article  CAS  Google Scholar 

  35. Mohapatra AK, Mohanty S, Nayak SK (2012) Polym Compos 33:2095

    Article  CAS  Google Scholar 

  36. Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH (2016) Compos Part B 86:273

    Article  CAS  Google Scholar 

  37. Sundararaj U, Macosko CW (1995) Macromolecules 28:2647

    Article  CAS  Google Scholar 

  38. Yee M, Calvão PS, Demarquette NR (2007) Rheol Acta 46:653

    Article  CAS  Google Scholar 

  39. Calvão PS, Yee M, Demarquette NR (2005) Polymer 46:2610

    Article  CAS  Google Scholar 

  40. Wu D, Zhang Y, Zhang M, Zhou W (2008) Eur Polym J 44:2171

    Article  CAS  Google Scholar 

  41. Dealy JM, Wang J (2013) Melt rheology and its applications in the plastics industry engineering materials and processes, 2nd edn. Springer, Netherlands

    Book  Google Scholar 

  42. Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756

    Article  CAS  Google Scholar 

  43. Chen Y, Zou H, Liang M, Liu P (2013) J Appl Polym Sci 129:945

    Article  CAS  Google Scholar 

  44. Shen G, Shen H, Xie B, Yang W, Yang M (2013) J Appl Polym Sci 129:2103

    Article  CAS  Google Scholar 

  45. Kwon MK, Cho KS (2016) Korea-Aust Rheol J 28:23

    Article  Google Scholar 

  46. Lacroix C, Aressy M, Carreau PJ (1997) Rheol Acta 36:416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Agrawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, P., Araújo, A.P.M., Lima, J.C.C. et al. Rheology, Mechanical Properties and Morphology of Poly(lactic acid)/Ethylene Vinyl Acetate Blends. J Polym Environ 27, 1439–1448 (2019). https://doi.org/10.1007/s10924-019-01445-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01445-8

Keywords

Navigation