Skip to main content
Log in

Impact of Hot Water Treated Lotus Leaves on Interfacial and Physico-Mechanical of Gelatin/Lotus Leaf Composites

  • Brief Communication
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The focus of this work was to analyze the influence of leaf treatments on mechanical, physical and chemical properties and thermal stability of the gelatin/lotus leaf composites. Lotus leaves were treated with drinking water at 95 °C for 5 min. The gelatin/untreated lotus leaf (referred to as GUL) and the gelatin/hot water treated lotus leaf (referred to as GHL) composites have been prepared by the compression molding technique. The composites have been investigated by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TAG), Scanning electron microscopy (SEM). Effect of the lotus leaf hand lay-up fiber orientation was studied for longitudinal, transverse and random orientation of the fibers. The tensile strength of gelatin/lotus leaf composites were influenced by the orientation of the fibers. It was found that longitudinal orientation delivered higher mechanical properties than that of the transverse and random orientation whether untreated or treated. The hot water modification of the lotus leaf was employed to improve the interfacial adhesion of the composites in order to improve the tensile properties. By using TGA analysis data and Ozawa-Flynn-Wall (OFW) method, the thermal stability and degradation temperature of the lotus leaves treated with hot water were higher than those of untreated leaves. In addition, the properties of the novel bio-composites were potential in further development of biodegradable packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites B. https://doi.org/10.1016/j.compositesb.2019.106927

    Article  Google Scholar 

  2. Sinha AK, Bhattacharya S, Narang HK (2019) Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polym Polym Compos 27:597–608. https://doi.org/10.1177/0967391119855843

    Article  CAS  Google Scholar 

  3. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Composites B. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  Google Scholar 

  4. Jordá-Vilaplana A, Carbonell-Verdú A, Samper MD, Pop A, Garcia-Sanoguera D (2017) Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers. Compos Sci Technol 145:1–9. https://doi.org/10.1016/j.compscitech.2017.03.036

    Article  CAS  Google Scholar 

  5. Lopattananon N, Panawarangkul K, Sahakaro K, Ellis B (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102:1974–1984. https://doi.org/10.1002/app.24584

    Article  CAS  Google Scholar 

  6. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composite A 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  7. Inamura PY, Kraide FH, Drumond WS, de Lima NB, Moura EAB, del Mastro NL (2013) Ionizing radiation influence on the morphological and thermal characteristics of a biocomposite prepared with gelatin and Brazil nut wastes as fiber source. Radiat Phys Chem 84:66–69. https://doi.org/10.1016/j.radphyschem.2012.06.043

    Article  CAS  Google Scholar 

  8. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  9. Mittal M, Chaudhary R (2019) Biodegradability and mechanical properties of pineapple leaf/coir Fiber reinforced hybrid epoxy composites. Mater Res Express. https://doi.org/10.1088/2053-1591/aaf8d6

    Article  Google Scholar 

  10. Indra Reddy M, Anil Kumar M, Raju CRB (2018) Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites. Mater Today Proc 5:458–462. https://doi.org/10.1016/j.matpr.2017.11.105

    Article  CAS  Google Scholar 

  11. Elanchezhian C, Ramnath BV, Ramakrishnan G, Rajendrakumar M, Naveenkumar V, Saravanakumar MK (2018) Review on mechanical properties of natural fiber composites. Materials Today: Proceedings 5: 1785–1790. https://doi.org/10.1016/j.matpr.2017.11.276

  12. Wu C-S, Hsu Y-C, Liao H-T, Yen F-S, Wang C-Y, Hsu C-T (2014) Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. J Appl Polym Sci. https://doi.org/10.1002/app.40730

    Article  Google Scholar 

  13. Sengor M, Ozgun A, Gunduz O, Altintas S (2020) Aqueous electrospun core/shell nanofibers of PVA/microbial transglutaminase cross-linked gelatin composite scaffolds. Mater Lett. https://doi.org/10.1016/j.matlet.2019.127233

    Article  Google Scholar 

  14. El-Nemr KF, Mohamed HR, Ali MA, Fathy RM, Dhmees AS (2019) Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1657108

    Article  Google Scholar 

  15. Latthe SS, Terashima C, Nakata K, Fujishima A (2014) Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19:4256–4283. https://doi.org/10.3390/molecules19044256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H (2008) Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Bioinspir Biomim 3:046004. https://doi.org/10.1088/1748-3182/3/4/046004

    Article  CAS  PubMed  Google Scholar 

  17. Nikmatin S, Rudwiyanti JR, Prasetyo KW et al (2014) Mechanical and optical characterization of bio-nanocomposite from pineapple leaf fiber material for food packaging. Int Soc Opt Photon. https://doi.org/10.1117/12.2081112

    Article  Google Scholar 

  18. Razak SIA, Sharif NFA (2014) Cassava leaves as packaging materials. Cellul Chem Technol 48:585–590

    Google Scholar 

  19. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater Sci Eng A 517:344–353. https://doi.org/10.1016/j.msea.2009.04.027

    Article  CAS  Google Scholar 

  20. Senthilkumar K, Rajini N, Saba N, Chandrasekar M, Jawaid M, Siengchin S (2019) Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. J Polym Environ 27:1191–1201. https://doi.org/10.1007/s10924-019-01418-x

    Article  CAS  Google Scholar 

  21. Jiang D, Cui S, Xu F, Tuo T (2015) Impact of leaf fibre modification methods on compatibility between leaf fibres and cement-based materials. Constr Build Mater 94:502–512. https://doi.org/10.1016/j.conbuildmat.2015.07.045

    Article  Google Scholar 

  22. Khalili P, Liu X, Zhao Z, Blinzler B (2019) Fully biodegradable composites: thermal, flammability, moisture absorption and mechanical properties of natural fibre-reinforced composites with nano-hydroxyapatite. Materials (Basel). https://doi.org/10.3390/ma12071145

  23. Zhang Y, Miyauchi M, Nutt S (2018) Moisture absorption and hydrothermal aging of phenylethynyl-terminated pyromellitic dianhydride-type asymmetric polyimide and composites. High Perform Polym 31:1020–1029. https://doi.org/10.1177/0954008318816754

    Article  CAS  Google Scholar 

  24. Moudood A, Rahman A, Öchsner A, Islam M, Francucci G (2018) Flax fiber and its composites: an overview of water and moisture absorption impact on their performance. J Reinf Plast Compos 38:323–339. https://doi.org/10.1177/0731684418818893

    Article  CAS  Google Scholar 

  25. Londhe R, Mache A, Kulkarni A (2016) An experimental study on moisture absorption for jute-epoxy composite with coatings exposed to different pH media. Perspect Sci 8:580–582. https://doi.org/10.1016/j.pisc.2016.06.026

    Article  Google Scholar 

  26. Luis A, Domingues F, Ramos A (2019) Production of hydrophobic zein-based films bioinspired by the lotus leaf surface: characterization and bioactive properties. Microorganisms. https://doi.org/10.3390/microorganisms7080267

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Wu H, Yu X, Chen F, Wu J (2012) Microscopic observations of the lotus leaf for explaining the outstanding mechanical properties. J Bionic Eng 9:84–90. https://doi.org/10.1016/s1672-6529(11)60100-5

    Article  CAS  Google Scholar 

  28. Das S, Saha AK, Choudhury PK et al (2000) Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polym Sci 76:1652–1661

    Article  CAS  Google Scholar 

  29. Mercy JL, Velmurugan R, Sasipraba T, Jacob C (2019) Neurofuzzy modelling of moisture absorption kinetics and its effect on the mechanical properties of pineapple fibre-reinforced polypropylene composite. J Compos Mater. https://doi.org/10.1177/0021998319870581

    Article  Google Scholar 

  30. Somashekhar TM, Naik P, Nayak V, Rahul S (2018) Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conf Ser. https://doi.org/10.1088/1757-899x/376/1/012105

    Article  Google Scholar 

  31. Potluri R, Diwakar V, Venkatesh K, Srinivasa Reddy B (2018) Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Mater. Today Proc. 5:5809–5818. https://doi.org/10.1016/j.matpr.2017.12.178

    Article  CAS  Google Scholar 

  32. Munde YS, Ingle RB (2015) Theoretical modeling and experimental verification of mechanical properties of natural fiber reinforced thermoplastics. Procedia Technol 19:320–326. https://doi.org/10.1016/j.protcy.2015.02.046

    Article  Google Scholar 

  33. Liu L, Yu J, Cheng L, Qu W (2009) Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites A 40:669–674. https://doi.org/10.1016/j.compositesa.2009.03.002

    Article  CAS  Google Scholar 

  34. Asim M, Jawaid M, Abdan K, Ishak MR (2017) The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. J Polym Environ 26:1520–1527. https://doi.org/10.1007/s10924-017-1060-z

    Article  CAS  Google Scholar 

  35. Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene–butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. https://doi.org/10.1007/s10853-016-9874-y

    Article  CAS  Google Scholar 

  36. Vilay V, Mariatti M, Mat Taib R et al (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638. https://doi.org/10.1016/j.compscitech.2007.10.005

    Article  CAS  Google Scholar 

  37. Elanthikkal S, Gopalakrishnapanicker U, Varghese S, Guthrie JT (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohydr Polym 80:852–859. https://doi.org/10.1016/j.carbpol.2009.12.043

    Article  CAS  Google Scholar 

  38. Murthy TP, Manohar B (2014) Hot air drying characteristics of mango ginger: prediction of drying kinetics by mathematical modeling and artificial neural network. J Food Sci Technol 51:3712–3721. https://doi.org/10.1007/s13197-013-0941-y

    Article  CAS  PubMed  Google Scholar 

  39. Xu J, Zhu C, Xie X, Yan C, Wang Y (2019) A study on kinetics of ignition reaction of B4C/KNO3 and B4C/KClO4 pyrotechnic smoke compositions. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-09015-9

    Article  Google Scholar 

  40. Pouretedal HR, Loh Mousavi S (2018) Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J Therm Anal Calorim 132:1307–1315. https://doi.org/10.1007/s10973-018-7028-y

    Article  CAS  Google Scholar 

  41. Edreis EMA, Yao H (2016) Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. J Mater Res Technol 5:317–326. https://doi.org/10.1016/j.jmrt.2016.03.006

    Article  CAS  Google Scholar 

  42. Wang P-c, Xie Q, Xu Y-g, Wang J-q, Lin Q-h, Lu M (2017) A kinetic investigation of thermal decomposition of 1,1′-dihydroxy-5,5′-bitetrazole-based metal salts. J Therm Anal Calorim 130:1213–1220. https://doi.org/10.1007/s10973-017-6485-z

    Article  CAS  Google Scholar 

  43. Doymaz İ (2012) Air-drying characteristics, effective moisture diffusivity and activation energy of grape leaves. J Food Process Preserv 36(2):161–168

    Article  Google Scholar 

  44. Sobukola OP et al (2017) Thin layer drying process of some leafy vegetables under open sun. Food Sci Technol Int. https://doi.org/10.1177/1082013207075953

    Article  Google Scholar 

  45. da Ronicely P et al (2014) Evaluation of electrical conductivity as a quality parameter of lemongrass leaves (Cymbopogon citratus Stapf) submitted to drying process. Drying Technol 32(8):969–980

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Y0201800586) and the Regional Cooperative Innovation in Autonomous Region (2019E0241)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., He, C., Wei, Z. et al. Impact of Hot Water Treated Lotus Leaves on Interfacial and Physico-Mechanical of Gelatin/Lotus Leaf Composites. J Polym Environ 28, 3270–3278 (2020). https://doi.org/10.1007/s10924-020-01778-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01778-9

Keywords

Navigation