Skip to main content
Log in

Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The biodegradable nature of polyhydroxyalkanoates (PHAs) is an outstanding feature for the replacement of petroleum-based polymers. The most studied PHAs are polyhydroxybutyrate and its copolymer with hydroxyvalerate. However, PHAs have a considerably higher cost than conventional polymers, which is one of the main obstacles to their growth in the polymers market. Also, its high brittleness, low impact strength, and high processing temperature must be improved. In this sense, incorporating natural fibers to PHAs does not compromise their eco-friendly nature; conversely, they could even enhance the biodegradation rate while bringing significant cost reduction and a reinforcement effect. Moreover, natural fibers are usually wasted from industrial processes without any added-value. This review summarizes the published literature and the state-of-the-art of PHAs-based biocomposites. An extensive discussion is presented about lignocellulosic fibers’ effect on the thermal, mechanical, and biodegradation properties, and fiber-matrix adhesion, as well as the use of compatibilizers, plasticizers, and processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study

References

  1. Jayanth D, Kumar PS, Nayak GC, Kumar JS, Pal SK, Rajasekar R (2018) J Polym Environ 26:838–865

    CAS  Google Scholar 

  2. Iwańczuk A, Kozłowski M, Łukaszewicz M, Jabłoński S (2015) J Polym Environ 23:277–282

    Google Scholar 

  3. Das R, Karumbaiah KM (2015). In: Fakirov S (ed) Biodegradable polyesters. Wiley-VCH, Weinheim, p 321

    Google Scholar 

  4. Mozumder MSI (2020). In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, Amsterdam, p 223

    Google Scholar 

  5. Chen GQ, Luo RC (2009). In: Yu L (ed) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken, p 191

    Google Scholar 

  6. Poltronieri P, Kumar P (2019) In: Editors: Torres-Martinez LM, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer, Cham, p. 2843

  7. Wong S, Shanks R (2009). In: Yu L (ed) Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken, p 303

    Google Scholar 

  8. Rajan KP, Thomas SP, Gopanna A, Chavali M (2019) In: Editors: Torres-Martinez LM, Kharissova OV, Kharisov BI (eds) Handbook of ecomaterials. Springer, Cham, p. 2803

  9. Motaung TE, Linganiso LZ (2018) Int J Plast Technol 22:185–216

    CAS  Google Scholar 

  10. Youssef AM, Hasanin MS, Abd El-Aziz ME, Darwesh OM (2019) Heliyon 5:e01332

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fu S, Song P, Liu X (2017). In: Fan M, Fu F (eds) Advanced high strength natural fibre composites in construction. Woodhead, London, p 479

    Google Scholar 

  12. Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Energy Procedia 34:664–672

    CAS  Google Scholar 

  13. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878–888

    CAS  Google Scholar 

  14. Robledo-Ortíz JR, González-López ME, Rodrigue D, Gutiérrez-Ruiz JF, Prezas-Lara F, Pérez-Fonseca AA (2020) J Polym Environ 28:1040–1049

    Google Scholar 

  15. Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Ind Crops Prod 52:481–494

    Google Scholar 

  16. Yatigala NS, Bajwa DS, Bajwa SG (2018a) J Polym Environ 26:4188–4200

    CAS  Google Scholar 

  17. Tertyshnaya YV, Podzorova MV (2018) Russ J Appl Chem 91:417–423

    CAS  Google Scholar 

  18. Kuciel S, Mazur K, Jakubowska P (2019) J Polym Environ 27:803–815

    CAS  Google Scholar 

  19. Lambert S (2016) In: Microbial factories: Biodiversity, biopolymers, bioactive molecules, vol 2. Springer, New Delhi, p 1

    Google Scholar 

  20. Clifton-García B, González-Reynoso O, Robledo-Ortiz JR, Villafaña-Rojas J, González-García Y (2020) Lett Appl Microbiol 70:300–309

    PubMed  Google Scholar 

  21. Philip S, Keshavarz T, Roy I (2007) J Chem Technol Biotechnol 82:233–247

    CAS  Google Scholar 

  22. Chek MF, Kim SY, Mori T, Arsad H, Samian MR, Sudesh K, Hakoshima T (2017) Sci Rep 7:1–15

    CAS  Google Scholar 

  23. Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. iSmithers, Shawbury

  24. Avella M, La Rota G, Martuscelli E, Raimo M, Sadocco P, Elegir G, Riva R (2000) J Mater Sci 35:829–836

    CAS  Google Scholar 

  25. Zini E, Focarete ML, Noda I, Scandola M (2007) Compos Sci Technol 67:2085–2094

    CAS  Google Scholar 

  26. Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822-4828

  27. Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361–369

    CAS  Google Scholar 

  28. Bourban C, Karamuk E, De Fondaumière MJ, Ruffieux K, Mayer J, Wintermantel E (1997) J Environ Polym Degrad 5:159–166

    CAS  Google Scholar 

  29. Luo S, Netravali AN (1999) J Mater Sci 34:3709–3719

    CAS  Google Scholar 

  30. Modi S, Koelling K, Vodovotz Y (2011) Eur Polym J 47:179–186

    CAS  Google Scholar 

  31. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Ind Crops Prod 99:117–125

    CAS  Google Scholar 

  32. Gunning MA, Geever LM, Killion JA, Lyons JG, Higginbotham CL (2013) Polym Test 32:1603–1611

    CAS  Google Scholar 

  33. Gatenholm P, Kubát J, Mathiasson A (1992) J Appl Polym Sci 45:1667–1677

    CAS  Google Scholar 

  34. El-Taweel SH, Al-Ahmadi AO (2020). Polym Bull. https://doi.org/10.1007/s00289-020-03129-z

    Article  Google Scholar 

  35. Hoffmann R, Morais DDS, Braz CJF, Haag K, Wellen RMR, Canedo EL, de Carvalho LH, Koschek K (2019) Compos Part A Appl Sci Manuf 124:105472

    CAS  Google Scholar 

  36. Garcia-Garcia D, Ferri JM, Boronat T, Lopez-Martinez J, Balart R (2016) Polym Bull 73:3333–3350

    CAS  Google Scholar 

  37. Arrieta MP, Samper MD, Aldas M, López J (2017) Materials (Basel) 10:1–26

    Google Scholar 

  38. Abdelwahab MA, Flynn A, Chiou B, Sen B, Imman S, Orts W, Chiellini E (2012) Polym Degrad Stab 97:1822–1828

    CAS  Google Scholar 

  39. D’Amico DA, Iglesias Montes ML, Manfredi LB, Cyras VP (2016) Polym Test 49:22–28

    Google Scholar 

  40. Hu Y, Sato H, Zhang J, Noda I, Ozaki Y (2008) Polymer 49:4204–4210

    CAS  Google Scholar 

  41. Tri PN, Domenek S, Guinault A, Sollogoub C (2013) J Appl Polym Sci 129:3355–3365

    CAS  Google Scholar 

  42. Iglesias Montes ML, Cyras VP, Manfredi LB, Pettarín V, Fasce LA (2020) Polym Test 84:106375

    CAS  Google Scholar 

  43. Zhang M, Thomas NL (2011) Adv Polym Technol 30:67–79

    Google Scholar 

  44. Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2008) Bioresour Technol 99:2680–2686

    CAS  PubMed  Google Scholar 

  45. Graupner N, Müssig J (2011) Compos Part A Appl Sci Manuf 42:2010–2019

    Google Scholar 

  46. Ashori A, Jonoobi M, Ayrilmis N, Shahreki A, Fashapoyeh MA (2019) Int J Biol Macromol 136:1119–1124

    CAS  PubMed  Google Scholar 

  47. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M (2006) J Appl Polym Sci 102:804–809

    CAS  Google Scholar 

  48. Carofiglio VE, Stufano P, Cancelli N, De Benedictis VM, Centrone D, Benedetto De E, Cataldo A, Sannino A, Demitri C (2017) J Environ Chem Eng 5:6001–6007

    CAS  Google Scholar 

  49. da Moura Silva A , Demori R, Leão RM, Crescente Frankenberg CL, Campomanes Santana RM (2019) Mater Today Commun 18:191–198

    Google Scholar 

  50. Garcia-Garcia D, Lopez-Martinez J, Balart R, Strömberg E, Moriana R (2018) Eur Polym J 104:10–18

    CAS  Google Scholar 

  51. Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) J Polym Environ 17:109–114

    CAS  Google Scholar 

  52. Moura A, Bolba C, Demori R, Lima LPFC, Santana RMC (2018) J Polym Environ 26:2632–2639

    CAS  Google Scholar 

  53. Singh S, Mohanty AK, Misra M (2010) Compos Part A Appl Sci Manuf 41:304–312

    Google Scholar 

  54. Battegazzore D, Noori A, Frache A (2019) Polym Compos 40:3429–3437

    CAS  Google Scholar 

  55. Angelini S, Cerruti P, Immirzi B, Santagata G, Scarinzi G, Malinconico M (2014) Int J Biol Macromol 71:163–173

    CAS  PubMed  Google Scholar 

  56. Wei L, Liang S, McDonald AG (2015) Ind Crops Prod 69:91–103

    CAS  Google Scholar 

  57. Lammi S, Gastaldi E, Gaubiac F, Angellier-Coussy H (2019) Polym Degrad Stab 166:325–333

    CAS  Google Scholar 

  58. Santos EBC, Barros JJP, Moura De DA, Moreno CG, Fim FDC, Silva Da LB (2019) J Mater Res Technol 8:531–540

    CAS  Google Scholar 

  59. Uzun G, Aydemir D (2017) Bull Mater Sci 40:383–393

    CAS  Google Scholar 

  60. El-Hadi AM (2013) Colloid Polym Sci 291:743–756

    CAS  Google Scholar 

  61. Seoane IT, Cerrutti P, Vazquez A, Manfredi LB, Cyras VP (2017) J Polym Environ 25:586–598

    CAS  Google Scholar 

  62. Panaitescu DM, Nicolae CA, Gabor AR, Trusca R (2020) Ind Crops Prod 145:112071

    CAS  Google Scholar 

  63. Abdalkarim SYH, Wang Y, Yu HY, Ouyang Z, Asad RAM, Mu M, Lu Y, Yao J, Zhang L (2020) Ind Crops Prod 154:112704

    CAS  Google Scholar 

  64. Pérez-Fonseca AA, Robledo-Ortíz JR, Ramirez-Arreola DE, Ortega-Gudiño P, Rodrigue D, González-Núñez R (2014) Mater Des 64:35–43

    Google Scholar 

  65. Khoshnava SM, Rostami R, Ismail M, Rahmat AR, Ogunbode BE (2017) Constr Build Mater 154:155–155

    CAS  Google Scholar 

  66. Ma H, Joo CW (2011) Fibers Polym 12:310–315

    CAS  Google Scholar 

  67. Wu CS (2006) J Appl Polym Sci 102:3565–3574

    CAS  Google Scholar 

  68. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Compos Part A Appl Sci Manuf 39:875–886

    Google Scholar 

  69. Vaidya AA, Collet C, Gaugler M, Lloyd-Jones G (2019) Mater Today Commun 19:286–296

    CAS  Google Scholar 

  70. Barkoula NM, Garkhail SK, Peijs T (2010) Ind Crops Prod 31:34–42

    CAS  Google Scholar 

  71. Seoane IT, Manfredi LB, Cyras VP (2015) Procedia Mater Sci 8:807–813

    CAS  Google Scholar 

  72. Mazur K, Singh R, Friedrich RP, Friedrich RP, Genç H, Unterweger H, Satasinska K, Bogucki R, Kuciel S, Cicha I (2020) Macromol Mater Eng 305:1–15

    Google Scholar 

  73. Niaounakis M (2013) Biopolymers reuse, recycling, and disposal. William Andrew, Oxford

    Google Scholar 

  74. Yatigala NS, Bajwa DS, Bajwa SG (2018b) Compos Part A Appl Sci Manuf 107:315–325

    CAS  Google Scholar 

  75. Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Bioresour Technol 99:6844–6851

    CAS  PubMed  Google Scholar 

  76. Orts WJ, Romansky M, Guillet JE (1992) Macromolecules 25:949–953

    CAS  Google Scholar 

  77. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2007) J Mater Sci 42:6501–6509

    CAS  Google Scholar 

  78. Conti DS, Yoshida MI, Pezzin SH, Coelho LAF (2007) Fluid Phase Equilib 261:79–84

    CAS  Google Scholar 

  79. Gogotov IN, Gerasin VA, Knyazev YV, Antipov EM, Barazov SK (2010) Appl Biochem Microbiol 46:607–613

    CAS  Google Scholar 

  80. Anderson S, Zhang J, Wolcott MP (2013) J Polym Environ 21:631–639

    CAS  Google Scholar 

  81. Tănase EE, Popa ME, Râpă M, Popa O (2015) Agric Agric Sci Procedia 6:608–615

    Google Scholar 

  82. Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S (2017) Polym Test 59:430–440

    CAS  Google Scholar 

  83. Scalioni LV, Gutiérrez MC, Felisberti MI (2017) J Appl Polym Sci 134:1–13

    Google Scholar 

  84. Chen LJ, Wang M (2002) Biomaterials 23:2631–2639

    CAS  PubMed  Google Scholar 

  85. Phiri G, Khoathane MC, Sadiku ER (2014) J Reinf Plast Compos 33:283–293

    Google Scholar 

  86. Mazur K, Kuciel S (2019) Molecules 24:3538

    CAS  PubMed Central  Google Scholar 

  87. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Prog Polym Sci 37:1552–1596

    CAS  Google Scholar 

  88. Mohanty AK, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276–277:1–24

    Google Scholar 

  89. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221–274

    CAS  Google Scholar 

  90. Pérez-Fonseca AA, Robledo-Ortíz JR, González-Núñez R, Rodrigue D (2016) J Appl Polym Sci 133:43750

    Google Scholar 

  91. Torres-Giner S, Montanes N, Fombuena V, Boronat T, Sanchez-Nacher L (2018) Adv Polym Technol 37:1305–1315

    CAS  Google Scholar 

  92. Singh S, Mohanty AK (2007) Compos Sci Technol 67:1753–1763

    CAS  Google Scholar 

  93. Bourmaud A, Shah DU, Beaugrand J, Dhakal HN (2020) Ind Crops Prod 154:112705

    CAS  Google Scholar 

  94. Farsi M (2010) J Reinf Plast Compos 29:3587–3592

    CAS  Google Scholar 

  95. Battegazzore D, Frache A, Abt T, Maspoch ML (2018) Compos Part B Eng 148:188–197

    CAS  Google Scholar 

  96. Melo JDD, Carvalho LFM, Medeiros AM, Souto CRO, Paskocimas CA (2012) Compos Part B Eng 43:2827–2835

    CAS  Google Scholar 

  97. Gallardo-Cervantes M, González-García Y, Pérez-Fonseca AA, González-López ME, Manríquez-González R, Rodrigue D, Robledo-Ortíz JR (2020). J Appl Polym Sci. https://doi.org/10.1002/app.50182

    Article  Google Scholar 

  98. Wong S, Shanks R, Hodzic A (2002) Macromol Mater Eng 287:647–655

    CAS  Google Scholar 

Download references

Acknowledgements

M.E. Gonzalez-López and A.S. Martín del Campo acknowledge the financial support of the Mexican National Council of Science and Technology (CONACyT) for their scholarships. Also, the authors acknowledge the State Council of Science and Technology of Jalisco (COECyTJAL) for the Grant FODECIJAL 8107-2019.

Funding

This work was supported by the State Council of Science and Technology of Jalisco (COECyTJAL), Grant FODECIJAL 8107-2019 and the Mexican National Council of Science and Technology (CONACyT), scholarships 481448 and 742432

Author information

Authors and Affiliations

Authors

Contributions

JRR-O: Investigation, Writing-original draft, Writing-review and editing, Funding acquisition MEG-L: Investigation, Formal analysis, Writing-original draft, Writing-review and editing ASMd Campo: Investigation, Writing-original draft, Writing-review and editing. AAP-F: Conceptualization, Supervision, Writing-review and editing, Funding acquisition.

Corresponding author

Correspondence to Aida A. Pérez-Fonseca.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robledo-Ortíz, J.R., González-López, M.E., Martín del Campo, A.S. et al. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with Hydroxyvalerate: A Review. J Polym Environ 29, 1350–1364 (2021). https://doi.org/10.1007/s10924-020-01979-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01979-2

Keywords

Navigation