Skip to main content

Advertisement

Log in

Chitosan Based Nanoformulation for Sustainable Agriculture with Special Reference to Abiotic Stress: A Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitosan is a naturally occurring biological macromolecule and second most abundant polysaccharide next to cellulose, derived from deacetylation of chitin. Due to its biocompatibility, biodegradability, nontoxic and broad spectrum of antimicrobial activity, it has become an important field of drug delivery system study. With the advancement in nanotechnology, chitosan based nanoformulations have sought considerable attention in agricultural sciences. The first part of this review focuses on the overview of chitosan and its nanoparticles, its different mode of synthesis and challenges, and controlled release mechanism of encapsulated molecules. The subsequent section focuses on the uptake and translocation of chitosan based nanoformulation including plant growth, nutrition and special focus on abiotic stress mitigation strategies. We conclude that chitosan based nanoformulation holds great promises in encapsulating bioactive molecules for controlled release thus reduces environmental hazard, and improves plant growth, yield and subsequently mitigates various biotic and abiotic stresses. Chitosan based nanoformulations have good controlled release behaviour and long stability of bioactive compounds encapsulated inside chitosan nanoparticle, and have prosperous future for improving agricultural productivity in the era of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81–90. https://doi.org/10.1016/j.jrurstud.2011.09.001

    Article  Google Scholar 

  2. Dhillon GS, Kaur S, Brar SK, Verma M (2013) Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biotechnol 33:379–403. https://doi.org/10.3109/07388551.2012.717217

    Article  CAS  PubMed  Google Scholar 

  3. Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019) Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants 25:313–326. https://doi.org/10.1007/s12298-018-0633-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phothi R, Theerakarunwong CD (2017) Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci 11:624–630

    Article  CAS  Google Scholar 

  5. Chibu H, Shibayama H, Arima S (2002) Effects of chitosan application on the shoot growth of rice and soybean. Jpn J Crop Sci 71:206–211. https://doi.org/10.1626/jcs.71.206

    Article  CAS  Google Scholar 

  6. Choudhary RC, Kumaraswamy RV, Kumari S et al (2017) Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep. https://doi.org/10.1038/s41598-017-08571-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Falcón-Rodríguez AB, Costales D, Gónzalez-Peña D et al (2017) Chitosans of different molecular weight enhance potato (Solanum tuberosum L.) yield in a field trial. Span J Agric Res 15:e0902. https://doi.org/10.5424/sjar/2017151-9288

    Article  Google Scholar 

  8. Sathiyabama M, Charles RE (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydr Polym 133:400–407. https://doi.org/10.1016/j.carbpol.2015.07.066

    Article  CAS  PubMed  Google Scholar 

  9. Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20:1–19

    Article  Google Scholar 

  10. Chakraborty M, Hasanuzzaman M, Rahman M et al (2020) Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 10:624

    Article  CAS  Google Scholar 

  11. Jogaiah S, Satapute P, De Britto S et al (2020) Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. Int J Biol Macromol 162:1825–1838. https://doi.org/10.1016/J.IJBIOMAC.2020.08.124

    Article  CAS  PubMed  Google Scholar 

  12. Bondok AM (2015) Response of tomato plants to salicylic acid and chitosan under infection with tomato mosaic virus. Am J Agric Env Sci 15:1520–1529

    Google Scholar 

  13. Fan Z, Qin Y, Liu S et al (2020) Chitosan oligosaccharide fluorinated derivative control root-knot nematode (Meloidogyne incognita) disease based on the multi-efficacy strategy. Mar Drugs 18:273

    Article  CAS  PubMed Central  Google Scholar 

  14. Patel JS, Selvaraj V, Gunupuru LR et al (2020) Combined application of Ascophyllum nodosum extract and chitosan synergistically activates host-defense of peas against powdery mildew. BMC Plant Biol 20:1–10. https://doi.org/10.1186/s12870-020-2287-8

    Article  CAS  Google Scholar 

  15. Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  PubMed  Google Scholar 

  16. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

    Article  CAS  PubMed  Google Scholar 

  17. Khot LR, Sankaran S, Maja JM et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  18. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. Insecticides design using advanced technologies. Springer, Berlin, pp 1–39

    Google Scholar 

  19. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  20. Yu J, Wang D, Geetha N et al (2021) Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review. Carbohydr Polym 261:117904. https://doi.org/10.1016/j.carbpol.2021.117904

    Article  CAS  PubMed  Google Scholar 

  21. Sathiyabama M, Manikandan A (2021) Foliar application of chitosan nanoparticle improves yield, mineral content and boost innate immunity in finger millet plants. Carbohydr Polym 258:117691. https://doi.org/10.1016/J.CARBPOL.2021.117691

    Article  CAS  PubMed  Google Scholar 

  22. Kadam PM, Prajapati D, Kumaraswamy RV et al (2021) Physio-biochemical responses of wheat plant towards salicylic acid-chitosan nanoparticles. Plant Physiol Biochem 162:699–705. https://doi.org/10.1016/j.plaphy.2021.03.021

    Article  CAS  PubMed  Google Scholar 

  23. Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14:e0902. https://doi.org/10.5424/sjar/2016141-8205

    Article  Google Scholar 

  24. Abdel-Aziz H, Hasaneen MN, Omar A (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot 1:87–95

    Google Scholar 

  25. Malerba M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers 10:118

    Article  PubMed Central  Google Scholar 

  26. Food and Agriculture Organization of the United Nations (2014). The State of World Fisheries and Aquaculture. FAO, Rome, Italy

  27. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039

    Article  CAS  PubMed  Google Scholar 

  28. Mujtaba M, Khawar KM, Camara MC et al (2020) Chitosan-based delivery systems for plants: a brief overview of recent advances and future directions. Int J Biol Macromol 154:683–697. https://doi.org/10.1016/j.ijbiomac.2020.03.128

    Article  CAS  PubMed  Google Scholar 

  29. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    Article  CAS  Google Scholar 

  30. Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17:996

    Article  PubMed Central  Google Scholar 

  31. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  32. Beaney P, Lizardi-Mendoza J, Healy M (2005) Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol 80:145–150. https://doi.org/10.1002/jctb.1164

    Article  CAS  Google Scholar 

  33. Chopra S, Mahdi S, Kaur J et al (2010) Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol 58:1021–1032. https://doi.org/10.1211/jpp.58.8.0002

    Article  CAS  Google Scholar 

  34. Mujtaba M, Morsi RE, Kerch G et al (2019) Current advancements in chitosan-based film production for food technology; a review. Int J Biol Macromol 121:889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109

    Article  CAS  PubMed  Google Scholar 

  35. Mirzaei Aminiyan M, Safari Sinegani AA, Sheklabadi M et al (2018) Journal of crop nutrition science. Carbohydr Polym 3:179–188. https://doi.org/10.22034/ijpp.2018.545665

    Article  Google Scholar 

  36. Sun T, Zhou D, Xie J, Mao F (2007) Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol 225:451–456. https://doi.org/10.1007/s00217-006-0439-1

    Article  CAS  Google Scholar 

  37. Khati P, Chaudhary P, Gangola S et al (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 7:81. https://doi.org/10.1007/s13205-017-0668-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nguyen Van S, Dinh Minh H, Nguyen Anh D (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of robusta coffee in green house. Biocatal Agric Biotechnol 2:289–294. https://doi.org/10.1016/j.bcab.2013.06.001

    Article  Google Scholar 

  39. Li R, He J, Xie H et al (2019) Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 126:91–100. https://doi.org/10.1016/j.ijbiomac.2018.12.118

    Article  CAS  PubMed  Google Scholar 

  40. Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J Macromol Sci Part A 31:629–642. https://doi.org/10.1080/10601329409349743

    Article  Google Scholar 

  41. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  42. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 90:21–27. https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  43. Mitra S, Gaur U, Ghosh P, Maitra A (2001) Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323. https://doi.org/10.1016/S0168-3659(01)00342-X

    Article  CAS  PubMed  Google Scholar 

  44. Sheikholeslami ZS, Salimi-Kenari H, Imani M et al (2017) Exploring the effect of formulation parameters on the particle size of carboxymethyl chitosan nanoparticles prepared via reverse micellar crosslinking. J Microencapsul 34:270–279. https://doi.org/10.1080/02652048.2017.1321047

    Article  CAS  PubMed  Google Scholar 

  45. Agnihotri SA, Aminabhavi TM (2004) Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release 96:245–259. https://doi.org/10.1016/j.jconrel.2004.01.025

    Article  CAS  PubMed  Google Scholar 

  46. Noruzi M, Zare D, Davoodi D (2012) A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 94:84–88. https://doi.org/10.1016/j.saa.2012.03.041

    Article  CAS  Google Scholar 

  47. Tokumitsu H, Ichikawa H, Fukumori Y (1999) Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 12:1830–1835

    Article  Google Scholar 

  48. Davis SS, Illum L (1999) Sustained release chitosan microspheres prepared by novel spray drying methods. J Microencapsul 16:343–355

    Article  PubMed  Google Scholar 

  49. Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20:291–300. https://doi.org/10.3109/1061186X.2011.654121

    Article  CAS  PubMed  Google Scholar 

  50. Kleine-Brueggeney H, Zorzi GK, Fecker T et al (2015) A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids Surf B Biointerfaces 135:99–108. https://doi.org/10.1016/j.colsurfb.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  51. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28. https://doi.org/10.1016/j.jconrel.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  52. Fernandes ALP, Morais WA, Santos AIB et al (2005) The influence of oxidative degradation on the preparation of chitosan nanoparticles. Colloid Polym Sci 284:1–9. https://doi.org/10.1007/s00396-005-1319-0

    Article  CAS  Google Scholar 

  53. Höhne S, Frenzel R, Heppe A, Simon F (2007) Hydrophobic chitosan microparticles: heterogeneous phase reaction of chitosan with hydrophobic carbonyl reagents. Biomacromol 8:2051–2058. https://doi.org/10.1021/bm0702354

    Article  CAS  Google Scholar 

  54. Fu F-L, Mi T-B, Wong S-S, Shy Y-J (2001) Characteristic and controlled release of anticancer drug loaded poly (D,L-lactide) microparticles prepared by spray drying technique. J Microencapsul 18:733–747. https://doi.org/10.1080/02652040010055649

    Article  CAS  PubMed  Google Scholar 

  55. Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y (2002) In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 53:57–63. https://doi.org/10.1016/S0939-6411(01)00198-9

    Article  CAS  PubMed  Google Scholar 

  56. Anto SM, Annadurai G (2012) Arsenic adsorptionfrom aqueous solution using chitosan nanoparticle. J Nanosci Nanotechnol 2:31–45

    Google Scholar 

  57. Qin Y, Xing R, Liu S et al (2012) Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydr Polym 87:2664–2670. https://doi.org/10.1016/j.carbpol.2011.11.048

    Article  CAS  Google Scholar 

  58. López-León T, Carvalho ELS, Seijo B et al (2005) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 283:344–351. https://doi.org/10.1016/j.jcis.2004.08.186

    Article  CAS  PubMed  Google Scholar 

  59. Kheiri A, Moosawi Jorf SA, Mallihipour A et al (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272. https://doi.org/10.1016/J.IJBIOMAC.2016.09.072

    Article  CAS  PubMed  Google Scholar 

  60. Chandra S, Chakraborty N, Dasgupta A et al (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:1–14

    Google Scholar 

  61. Saharan V, Pal A (2016) Chitosan based nanomaterials in plant growth and protection. Springer, New Delhi, pp 33–41

    Google Scholar 

  62. Kumaraswamy RV, Kumari S, Choudhary RC et al (2018) Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Int J Biol Macromol 113:494–506. https://doi.org/10.1016/j.ijbiomac.2018.02.130

    Article  CAS  PubMed  Google Scholar 

  63. Kumar S, Nehra M, Dilbaghi N et al (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153. https://doi.org/10.1016/j.jconrel.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  64. Kumaraswamy RV, Kumari S, Choudhary RC et al (2019) Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol 123:59–69. https://doi.org/10.1016/j.ijbiomac.2018.10.202

    Article  CAS  PubMed  Google Scholar 

  65. Roy A, Singh S, Bajpai J, Bajpai A (2014) Controlled pesticide release from biodegradable polymers. Open Chem 12:453–469. https://doi.org/10.2478/s11532-013-0405-2

    Article  CAS  Google Scholar 

  66. Cota-Arriola O, Onofre Cortez-Rocha M, Burgos-Hernández A et al (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93:1525–1536. https://doi.org/10.1002/jsfa.6060

    Article  CAS  PubMed  Google Scholar 

  67. Şenel S, Aksoy EA, Akca G (2019) Application of chitosan based scaffolds for drug delivery and tissue engineering in dentistry. Springer, Singapore, pp 157–178

    Google Scholar 

  68. Gong C-P, Luo Y, Pan Y-Y (2019) Novel synthesized zinc oxide nanoparticles loaded alginate-chitosan biofilm to enhanced wound site activity and anti-septic abilities for the management of complicated abdominal wound dehiscence. J Photochem Photobiol B Biol 192:124–130. https://doi.org/10.1016/j.jphotobiol.2019.01.019

    Article  CAS  Google Scholar 

  69. Mihou AP, Michaelakis A, Krokos FD et al (2007) Prolonged slow release of (Z)-11-hexadecenyl acetate employing polyurea microcapsules. J Appl Entomol 131:128–133. https://doi.org/10.1111/j.1439-0418.2006.01137.x

    Article  CAS  Google Scholar 

  70. NAM YS, TGP (1999) Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates. J Microencapsul 16:625–637. https://doi.org/10.1080/026520499288816

    Article  CAS  PubMed  Google Scholar 

  71. Camara MC, Campos EVR, Monteiro RA et al (2019) Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnology 17:100. https://doi.org/10.1186/s12951-019-0533-8

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater Sci Eng C 77:1349–1362. https://doi.org/10.1016/j.msec.2017.03.198

    Article  CAS  Google Scholar 

  73. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114. https://doi.org/10.1016/0142-9612(96)85755-3

    Article  PubMed  Google Scholar 

  74. Sharma N, Singh D, Rani R et al (2019) Chitosan and its nanocarriers. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  75. Orienti I, Aiedeh K, Gianasi E et al (1996) Chitosan-indomethacin conjugates. Effect of different substituents on the polysaccharide molecule on drug release. Arch Pharm 329:245–250. https://doi.org/10.1002/ardp.19963290505

    Article  CAS  Google Scholar 

  76. Khan S, Ranjha NM (2014) Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym Bull 71:2133–2158. https://doi.org/10.1007/s00289-014-1178-2

    Article  CAS  Google Scholar 

  77. Martínez-Ruvalcaba A, Sánchez-Díaz JC, Becerra F et al (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32. https://doi.org/10.3144/expresspolymlett.2009.5

    Article  CAS  Google Scholar 

  78. Kweon DK, Kang DW (1999) Drug-release behavior of chitosan-g-poly(vinyl alcohol) copolymer matrix. J Appl Polym Sci 74:458–464

    Article  CAS  Google Scholar 

  79. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plant 132:491–502. https://doi.org/10.1111/j.1399-3054.2007.01023.x

    Article  CAS  PubMed  Google Scholar 

  80. Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59. https://doi.org/10.1039/C8EN00645H

    Article  CAS  Google Scholar 

  81. Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res 15:1417. https://doi.org/10.1007/s11051-013-1417-8

    Article  CAS  Google Scholar 

  82. Hasaneen MNA, Abdel-Aziz HMM, Omer AM (2016) Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem Biotechnol Res 4:68–76

    Google Scholar 

  83. Deshpande P, Dapkekar A, Oak MD et al (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401. https://doi.org/10.1016/j.carbpol.2017.02.061

    Article  CAS  PubMed  Google Scholar 

  84. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  85. Geisler-Lee J, Wang Q, Yao Y et al (2012) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337. https://doi.org/10.3109/17435390.2012.658094

    Article  CAS  PubMed  Google Scholar 

  86. Zayed M, Elkafafi S, Zedan A, Dawoud S (2017) Effect of nano chitosan on growth, physiological and biochemical parameters of phaseolus vulgaris under salt stress. J Plant Prod 8:577–585. https://doi.org/10.21608/jpp.2017.40468

    Article  Google Scholar 

  87. Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539. https://doi.org/10.1111/nph.14920

    Article  CAS  PubMed  Google Scholar 

  88. Jabeen N, Ahmad R (2013) The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J Sci Food Agric. https://doi.org/10.1002/jsfa.5953

    Article  PubMed  Google Scholar 

  89. Ma L, Li Y, Yu C et al (2012) Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma. https://doi.org/10.1007/s00709-011-0290-5

    Article  PubMed  Google Scholar 

  90. Mahdavi B, Rahimi A (2013) Seed priming with chitosan improves the germination and growth performance of ajowan. Eur Asian J Biosci. https://doi.org/10.5053/ejobios.2013.7.0.9

    Article  Google Scholar 

  91. Al-Tawaha ARM, Al-Ghzawi ALA (2013) Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Res Crop 14:489–491

    Google Scholar 

  92. Mahdavi B (2013) Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity. Int J Agric Crop Sci 5:1084–1088

    Google Scholar 

  93. Yahyaabadi HM, Asgharipour MR, Basiri M (2016) Role of chitosan in improving salinity resistance through some morphological and physiological characteristics in fenugreek (Trigonella foenum-graecum L.). J Sci Technol Greenh Cult 7:12

    Google Scholar 

  94. Rahman MA, Tawaha A, Aziz Turk M, Al-Tawaha AM, Aludatt MH (2018) Using chitosan to improve growth of maize cultivars under salinity conditions. Bulg J Agric Sci 24:437–442

    Google Scholar 

  95. Oliveira HC, Gomes BCR, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide—Biol Chem 61:10–19. https://doi.org/10.1016/j.niox.2016.09.010

    Article  CAS  Google Scholar 

  96. Sen SK, Chouhan D, Das D et al (2020) Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int J Biol Macromol 145:108–123. https://doi.org/10.1016/j.ijbiomac.2019.12.170

    Article  CAS  PubMed  Google Scholar 

  97. Hernández-Hernández H, Juárez-Maldonado A, Benavides-Mendoza A et al (2018) Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy 8:175. https://doi.org/10.3390/agronomy8090175

    Article  CAS  Google Scholar 

  98. Varamin JK, Fanoodi F, Sinaki JM et al (2019) Physiological response of sesame (Sesamum indicum L.) to application of chitosan and magnesium-nano fertilizers under irrigation cut-off in a sustainable agriculture system. Iran J Plant Physiol 9:2629–2639. https://doi.org/10.22034/ijpp.2018.545665

    Article  Google Scholar 

  99. Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agric For Meteorol. https://doi.org/10.1016/S0168-1923(00)00242-2

    Article  Google Scholar 

  100. Iriti M, Picchi V, Rossoni M et al (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2009.01.004

    Article  Google Scholar 

  101. Ludwig N, Cabrini R, Faoro F et al (2010) Reduction of evaporative flux in bean leaves due to chitosan treatment assessed by infrared thermography. Infrared Phys Technol 53:65–70. https://doi.org/10.1016/j.infrared.2009.08.008

    Article  CAS  Google Scholar 

  102. Koers S, Guzel-Deger A, Marten I, Roelfsema MRG (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J 68:670–680. https://doi.org/10.1111/j.1365-313X.2011.04719.x

    Article  CAS  PubMed  Google Scholar 

  103. Li Z, Zhang Y, Zhang X et al (2017) Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res. https://doi.org/10.1021/acs.jproteome.7b00334

    Article  PubMed  PubMed Central  Google Scholar 

  104. Emami Bistgani Z, Siadat SA, Bakhshandeh A et al (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J. https://doi.org/10.1016/j.cj.2017.04.003

    Article  Google Scholar 

  105. Mahdavi B, Ali Mohammad Modarres Sanavy S, Aghaalikhani M et al (2011) Chitosan improves osmotic potential tolerance in safflower (Carthamus tinctorius L.) seedlings. J Crop Improv 25:728–741

    Article  CAS  Google Scholar 

  106. Sara K, Abbaspour H, Sinaki JM, Makarian H (2012) Effects of Water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.) Effects of water deficit and chitosan spraying effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). J Stress Physiol Biochem 8:3

    Google Scholar 

  107. Cheplick S, Sarkar D, Bhowmik PC, Shetty K (2017) Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Can J Plant Sci 98:717–731. https://doi.org/10.1139/cjps-2017-0055

    Article  CAS  Google Scholar 

  108. Yang F, Hu J, Li J et al (2009) Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul. https://doi.org/10.1007/s10725-009-9361-4

    Article  Google Scholar 

  109. Liu C, Liu Y, Guo K et al (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183. https://doi.org/10.1016/j.envexpbot.2010.11.012

    Article  CAS  Google Scholar 

  110. Farouk S, Amany AR (2012) Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egypt J Biol 14:14–26. https://doi.org/10.4314/ejb.v14i1.2

    Article  Google Scholar 

  111. Avestan S, Naseri L, Barker AV (2017) Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agar-induced osmotic stress. J Plant Nutr 40:2797–2807. https://doi.org/10.1080/01904167.2017.1382526

    Article  CAS  Google Scholar 

  112. Khan WM, Prithiviraj B, Smith DL (2002) Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40:621–624

    Article  CAS  Google Scholar 

  113. Al S, Sheikha AK, Al-Malki FM (2011) Growth and chlorophyll responses of bean plants to the chitosan applications. Eur J Sci Res 50(1):124–134

    Google Scholar 

  114. Behboudi F, Sarvestani TT, Kassaee ZZ et al (2018) Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. J Water Environ Nanotechnol 3:22–39

    CAS  Google Scholar 

  115. Priyaadharshini M, Sritharan N, Senthil A, Marimuthu S (2019) Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J Pharmacogn Phytochem 8:3304–3307

    CAS  Google Scholar 

  116. Ali EF, El-Shehawi AM, Ibrahim OHM et al (2021) A vital role of chitosan nanoparticles in improvisation the drought stress tolerance in Catharanthus roseus (L.) through biochemical and gene expression modulation. Plant Physiol Biochem 161:166–175. https://doi.org/10.1016/j.plaphy.2021.02.008

    Article  CAS  PubMed  Google Scholar 

  117. Silveira NM, Seabra AB, Marcos FCC et al (2019) Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide—Biol Chem 84:38–44. https://doi.org/10.1016/j.niox.2019.01.004

    Article  CAS  Google Scholar 

  118. Behboudi F, Tahmasebi-Sarvestani Z, Kassaee MZ et al (2019) Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J Plant Nutr 42:1439–1451. https://doi.org/10.1080/01904167.2019.1617308

    Article  CAS  Google Scholar 

  119. Guan Y, Hu J, Wang X, Shao C (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433. https://doi.org/10.1631/jzus.B0820373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Samarah NH, AL-Quraan NA, Massad RS, Welbaum GE (2020) Treatment of bell pepper (Capsicum annuum L.) seeds with chitosan increases chitinase and glucanase activities and enhances emergence in a standard cold test. Sci Hortic 269:109393. https://doi.org/10.1016/j.scienta.2020.109393

    Article  CAS  Google Scholar 

  121. Zou P, Tian X, Dong B, Zhang C (2017) Size effects of chitooligomers with certain degrees of polymerization on the chilling tolerance of wheat seedlings. Carbohydr Polym 160:194–202. https://doi.org/10.1016/j.carbpol.2016.12.058

    Article  CAS  PubMed  Google Scholar 

  122. Li Y, Zhang Q, Ou L et al (2020) Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide. Agronomy 10:915. https://doi.org/10.3390/agronomy10060915

    Article  CAS  Google Scholar 

  123. Zong H, Li K, Liu S et al (2017) Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere 181:92–100. https://doi.org/10.1016/j.chemosphere.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  124. Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105. https://doi.org/10.1016/j.scienta.2014.11.010

    Article  CAS  Google Scholar 

  125. Kamari A, Pulford ID, Hargreaves JSJ (2011) Binding of heavy metal contaminants onto chitosans—an evaluation for remediation of metal contaminated soil and water. J Environ Manage 92:2675–2682. https://doi.org/10.1016/j.jenvman.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  126. Vasconcelos MW (2014) Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00616

    Article  PubMed  PubMed Central  Google Scholar 

  127. Xiong L, Schumaker KS, Zhu J-K (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4:66–68. https://doi.org/10.4161/psb.4.1.7408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miya A, Albert P, Shinya T et al (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci 104:19613–19618. https://doi.org/10.1073/pnas.0705147104

    Article  PubMed  PubMed Central  Google Scholar 

  130. Chen HP, Xu LL (2005) Isolation and characterization of a novel chitosan-binding protein from non-heading Chinese cabbage leaves. J Integr Plant Biol 47:452–456. https://doi.org/10.1111/j.1744-7909.2005.00022.x

    Article  CAS  Google Scholar 

  131. Povero G, Loreti E, Pucciariello C et al (2011) Transcript profiling of chitosan-treated Arabidopsis seedlings. J Plant Res 124:619–629. https://doi.org/10.1007/s10265-010-0399-1

    Article  CAS  PubMed  Google Scholar 

  132. Zhang X, Wollenweber B, Jiang D et al (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848. https://doi.org/10.1093/jxb/erm364

    Article  CAS  PubMed  Google Scholar 

  133. Yin H, Li S, Zhao X et al (2006) cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem 44:910–916. https://doi.org/10.1016/j.plaphy.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  134. Singh RK, Martins V, Soares B et al (2020) Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cão) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. Int J Mol Sci 21:306. https://doi.org/10.3390/ijms21010306

    Article  CAS  PubMed Central  Google Scholar 

  135. Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160:859–863. https://doi.org/10.1078/0176-1617-00905

    Article  CAS  PubMed  Google Scholar 

  136. Sarkar D, Bhowmik PC, Shetty K (2010) Antioxidant enzyme response of creeping bentgrass clonal lines with marine peptide and chitosan oligosaccharide. Agron J 102:981–989. https://doi.org/10.2134/agronj2009.0360

    Article  CAS  Google Scholar 

  137. Zhang X, Li K, Xing R et al (2017) Metabolite profiling of wheat seedlings induced by chitosan: revelation of the enhanced carbon and nitrogen metabolism. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.02017

    Article  Google Scholar 

  138. Ait Barka E, Eullaffroy P, Clément C, Vernet G (2004) Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep 22:608–614. https://doi.org/10.1007/s00299-003-0733-3

    Article  CAS  PubMed  Google Scholar 

  139. Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190. https://doi.org/10.1016/j.plantsci.2006.02.006

    Article  CAS  Google Scholar 

  140. Chatelain PG, Pintado E, Vasconcelos M MW (2014) Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci 215–216:134–140. https://doi.org/10.1016/j.plantsci.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  141. Harfoush EA, Abdel-Razzek AH, El-Adgham FI, El-Sharkawy AM (2017) Effects of humic acid and chitosan under different levels of nitrogen and potassium fertilizers on growth and yield potential of potato plants (Solanum tuberosum, L.). Alex J Agric Sci 62(1):135–48

    Google Scholar 

  142. Zhang X, Li K, Liu S et al (2016) Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydr Polym 138:27–33. https://doi.org/10.1016/j.carbpol.2015.11.050

    Article  CAS  PubMed  Google Scholar 

  143. Saharan V, Kumaraswamy RV, Choudhary RC et al (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64:6148–6155. https://doi.org/10.1021/acs.jafc.6b02239

    Article  CAS  PubMed  Google Scholar 

  144. Asgari-Targhi G, Iranbakhsh A, Ardebili ZO (2018) Potential benefits and phytotoxicity of bulk and nano-chitosan on the growth, morphogenesis, physiology, and micropropagation of Capsicum annuum. Plant Physiol Biochem 127:393–402. https://doi.org/10.1016/j.plaphy.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  145. Attia MS, Osman MS, Mohamed AS et al (2021) Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants 10:388. https://doi.org/10.3390/plants10020388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kurtuluş G, Vardar F (2021) The effects of chitosan application against aluminum toxicity in wheat (Triticum Aestivum L.) roots. Ann di Bot 11:121–134. https://doi.org/10.13133/2239-3129/16884

    Article  Google Scholar 

  147. Liu J, Gai L, Zong H (2021) Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). Plant Physiol Biochem 164:115–121. https://doi.org/10.1016/j.plaphy.2021.04.038

    Article  CAS  PubMed  Google Scholar 

  148. Sadeghipour O (2021) Chitosan application improves nickel toxicity tolerance in soybean. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00505-0

    Article  Google Scholar 

  149. Younas HS, Abid M, Shaaban M, Ashraf M (2021) Influence of silicon and chitosan on growth and physiological attributes of maize in a saline field. Physiol Mol Biol Plants 27:387–397. https://doi.org/10.1007/s12298-021-00940-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hafez Y, Attia K, Alamery S et al (2020) Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy 10:630. https://doi.org/10.3390/agronomy10050630

    Article  CAS  Google Scholar 

  151. Elansary HO, Abdel-Hamid AME, Yessoufou K et al (2020) Physiological and molecular characterization of water-stressed chrysanthemum under robinin and chitosan treatment. Acta Physiol Plant 42:1–14

    Article  Google Scholar 

  152. Muley AB, Shingote PR, Patil AP et al (2019) Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydr Polym 210:289–301. https://doi.org/10.1016/j.carbpol.2019.01.056

    Article  CAS  PubMed  Google Scholar 

  153. Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult 137:575–585. https://doi.org/10.1007/s11240-019-01592-9

    Article  CAS  Google Scholar 

  154. Al-Ghamdi AA (2019) Marjoram physiological and molecular performance under water stress and chitosan treatment. Acta Physiol Plant 41:0. https://doi.org/10.1007/s11738-019-2830-0

    Article  CAS  Google Scholar 

  155. Ghanbari Moheb Seraj R, Behnamian M, Ahmadikhah A et al (2021) Chitosan and salicylic acid regulate morpho-physiological and phytochemical parameters and improve water-deficit tolerance in milk thistle (Silybum marianum L.). Acta Physiol Plant 43:101. https://doi.org/10.1007/s11738-021-03264-8

    Article  CAS  Google Scholar 

  156. Souri Z, Karimi N, Sarmadi M, Rostami E (2017) Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnol 11:650–655. https://doi.org/10.1049/iet-nbt.2016.0202

    Article  PubMed Central  Google Scholar 

  157. Picchi V, Gobbi S, Fattizzo M et al (2021) Chitosan nanoparticles loaded with n-acetyl cysteine to mitigate ozone and other possible oxidative stresses in durum wheat. Plants 10:691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sheikhalipour M, Esmaielpour B, Behnamian M et al (2021) Chitosan–selenium nanoparticle (Cs–se np) foliar spray alleviates salt stress in bitter melon. Nanomaterials 11:1–23. https://doi.org/10.3390/nano11030684

    Article  CAS  Google Scholar 

  159. Martin-Saldaña S, Chevalier MT, Iglesias MJ et al (2018) Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: recycling shrimp fishing industry waste. Carbohydr Polym 200:321–331. https://doi.org/10.1016/j.carbpol.2018.08.019

    Article  CAS  PubMed  Google Scholar 

  160. Muthukrishnan S, Murugan I, Selvaraj M (2019) Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in chickpea. Carbohydr Polym 212:169–177. https://doi.org/10.1016/j.carbpol.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  161. Pereira A, do ES, Oliveira HC, Fraceto LF (2019) Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-43494-y

    Article  CAS  Google Scholar 

  162. Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA et al (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073

    Article  CAS  PubMed  Google Scholar 

  163. Ha NMC, Nguyen TH, Wang S-L, Nguyen AD (2019) Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Res Chem Intermed 45:51–63. https://doi.org/10.1007/s11164-018-3630-7

    Article  CAS  Google Scholar 

  164. Sathiyabama M, Parthasarathy R (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydr Polym 151:321–325. https://doi.org/10.1016/j.carbpol.2016.05.033

    Article  CAS  PubMed  Google Scholar 

  165. Khalifa NS, Hasaneen MN (2018) The effect of chitosan–PMAA–NPK nanofertilizer on Pisum sativum plants. 3 Biotech 8:193. https://doi.org/10.1007/s13205-018-1221-3

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pereira AES, Silva PM, Oliveira JL et al (2017) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids Surf B Biointerfaces 150:141–152. https://doi.org/10.1016/j.colsurfb.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  167. Hernández-Hernández H, González-Morales S, Benavides-Mendoza A et al (2018) Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23:178

    Article  PubMed Central  Google Scholar 

  168. Chaudhry N, Dwivedi S, Chaudhry V et al (2018) Bio-inspired nanomaterials in agriculture and food: current status, foreseen applications and challenges. Microb Pathog 123:196–200. https://doi.org/10.1016/j.micpath.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  169. Kadam D, Momin B, Palamthodi S, Lele SS (2019) Physicochemical and functional properties of chitosan-based nano-composite films incorporated with biogenic silver nanoparticles. Carbohydr Polym 211:124–132. https://doi.org/10.1016/j.carbpol.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  170. Tovar GI, Briceño S, Suarez J et al (2020) Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environ Nanotechnol Monit Manag 14:100350. https://doi.org/10.1016/j.enmm.2020.100350

    Article  Google Scholar 

  171. Abdallah Y, Liu M, Ogunyemi SO et al (2020) Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. Molecules 25:4795. https://doi.org/10.3390/molecules25204795

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the researchers working on chitosan for improving our understanding of this novel biopolymer. AH is thankful to UGC-BHU for fellowship.

Funding

No funding was recieved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanabh Dwivedi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidangmayum, A., Dwivedi, P. Chitosan Based Nanoformulation for Sustainable Agriculture with Special Reference to Abiotic Stress: A Review. J Polym Environ 30, 1264–1283 (2022). https://doi.org/10.1007/s10924-021-02296-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02296-y

Keywords

Navigation