Skip to main content
Log in

Isolation and Functional Identification of an Antiplatelet RGD-Containing Disintegrin from Cerastes cerastes Venom

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The current report focuses on purification, structural and functional characterization of Cerastategrin from Cerastes cerastes venom, a novel basic disintegrin (pI 8.36) with 128 amino acid residues and a molecular weight of 13 835.25 Da measured by MALDI-MSMS. The 3D structure of Cerastategrin is organized as α-helix (13%), β-strand (15%) and disordered structure (30%) and presents homologies with several snake venom disintegrins. Structural modeling shows that Cerastategrin presents an RGD motif that connects specifically to integrin receptors. Cerastategrin exhibits the inhibition of ADP induced platelets with an IC50 of 0.88 µg/mL and shows in vivo long stable anticoagulation effect 24 h post-injection of increasing doses ranging from 0.2 to 1 mg/kg, therefore, Cerastategrin maintained irreversibly the blood incoagulable. Moreover, Cerastategrin decreases the amount of bounded αIIbβ3 and reduced significantly the quantity of externalized P-Selectin. Cerastategrin acts as a molecule targeting specifically the receptor αIIbβ3; therefore, it behaves as a potent platelet activation inhibitor. As a new peptide with promising pharmacological properties, Cerastategrin could have a potential therapeutical effect in the vascular pathologies and may be a new effective treatment approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Cc1-PLA2 :

Cerastes cerastes Phospholipase A2

CCSV-MPase:

Cerastes cerastes Snake venom metalloproteinase

SDS PAGE:

Sodium dodecyl sulphate

H2SO4 :

Sulfuric acid

NaOH:

Sodium hydroxid

TFA:

Trifluorophosphate acide

ACN:

Acetonetrile

TCEP:

Tris(2-carboxyethyl) phosphine

IAM:

10 MM 2-iodoacetamide

EDTA:

Ethylenediaminetetraacetic

EGTA:

Aminopolycarboxylic acid

TRAP-6:

Thrombin receptor activator peptide-6

References

  1. Harrison P (2005) Platelet function analysis. Blood Rev 19(2):111–123

    PubMed  Google Scholar 

  2. Rahman S, Flynn G, Aitken AYP (2000) Differential recognition of snake venom proteins expressing specific Arg-Gly-Asp (RGD) sequence motifs by wild-type and variant integrin αIIbβ3:further evidence for distinct sites of RGD ligand recognition exhibiting negative allostery. Biochem Journal 345:701–709

    CAS  Google Scholar 

  3. Rosove MH (2004) Platelet glycoprotein IIIb/IIIa inhibitors. Best Pract Res Clin Haematol 17(1):65–76

    PubMed  Google Scholar 

  4. Ozverel CS, Damm M, Hempel BF, Göçmen B, Sroka R, Süssmuth RD, Nalbantsoy A (2019) Investigating the cytotoxic effects of the venom proteome of two species of the Viperidae family (Cerastes cerastes and Cryptelytrops purpureomaculatus) from various habitats. Comp Biochem Physiol Part C 220(2018):20–30

    CAS  Google Scholar 

  5. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583(11):1736–1743

    CAS  PubMed  Google Scholar 

  6. Fahmi L, Makran B, Pla D, Sanz L, Oukkache N, Lkhider M, Harrison RA, Ghalim N, Calvete JJ (2012) Venomics and antivenomics profiles of North African Cerastes cerastes and C vipera populations reveals a potentially important therapeutic weakness. J Proteomics 75(8):2442–2453

    CAS  PubMed  Google Scholar 

  7. Djebari FL, Martin-Eauclaire MF (1990) Purification and characterization of a phospholipase A2 from Cerastes cerastes (horn viper) snake venom. Toxicon 28(6):637–646

    CAS  PubMed  Google Scholar 

  8. Matsui T, Fujimura Y, Titani K (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophy. Acta 1477(1–2):146–156

    CAS  Google Scholar 

  9. Laraba-Djebari F, Martin-Eauclaire M, Marchot P (1992) A fibrinogen-clotting serine proteinase from Cerastes cerastes (horned viper) venom with arginine-esterase and amidase activities. Purification, characterization and kinetic parameter determination. Toxicon 30:1399–1410

    CAS  PubMed  Google Scholar 

  10. Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM (2011) Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J 278(23):4544–4576

    CAS  PubMed  Google Scholar 

  11. Rivas-Mercado E (2017) Disintegrins obtained from snake venom and their pharmacological potential. Med Univ 19:32–37

    Google Scholar 

  12. Allane D, Oussedik-Oumehdi H, Harrat Z, Seve M, Laraba-Djebari F (2018) Isolation and characterization of an anti-leishmanial disintegrin from Cerastes cerastes venom. J Biochem Mol Toxicol 32(2):1–11

    Google Scholar 

  13. Fatah C, Samah S, Laraba-Djebari F (2018) (2018) Elucidation of function mechanism of a C type lectin purified from Cerastes cerastes venom: Input of in silico and in vitro approaches. Toxicon 149:106

    Google Scholar 

  14. Juares P, Wagstaff SC, Oliver J, Sanz L, Harrison RA, Calvete JJ, Jua P (2006) Molecular cloning of disintegrin-like transcript BA-5A from a Bitis arietans venom Gland cDNA library : a putative intermediate in the evolution of the long-chain disintegrin bitistatin. J Mol Evol 63:142–152

    Google Scholar 

  15. Okuda D, Koike H, Morita T (2002) A new gene structure of the disintegrin family : a subunit of dimeric disintegrin has a short coding region. Biochemistry 41:14248–14254

    CAS  PubMed  Google Scholar 

  16. Marcinkiewicz C (2005) Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm Des 11(7):815–827

    CAS  PubMed  Google Scholar 

  17. Matias MS, de Oliveira F, da Cunha Pereira DF, de Queiroz MR, de Morais NCG, Mamede CCN, de Oliveira Costa J, de Sousa BB (2017) The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 133:33–47

    PubMed  Google Scholar 

  18. Ramos OHP, Selistre-De-Araujo HS (2006) Snake venom metalloproteases - Structure and function of catalytic and disintegrin domains. Comp Biochem Physiol 142(3–4):328–346

    CAS  Google Scholar 

  19. Huang T-F, Sheu J-R, Teng C-M (1991) Mechanism of Action of a Potent Antiplatelet Peptide, Triflavin from Trimeresurus flavoviridis Snake Venom. Thromb Haemost 66(04):489–493

    CAS  PubMed  Google Scholar 

  20. Sheu JR, Lin CH, Peng HC, Huang TF (1996) Triflavin, an Arg-Gly-Asp-containing peptide, inhibits the adhesion of tumor cells to matrix proteins via binding to multiple integrin receptors expressed on human hepatoma cells. Exp Biol Med 213(1):71–79

    CAS  Google Scholar 

  21. Calvete JJ, Moreno-Murciano MP, Theakston RDG, Kisiel DG, Marcinkiewicz C (2003) Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J 372:725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Samah S, Fatah C, Jean-Marc B, Safia KT, Fatima LD (2017) Purification and characterization of Cc-Lec, C-type lactose-binding lectin: a platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. Int J Biol Macromol 102:336–350

    CAS  PubMed  Google Scholar 

  23. Wu X, Koiwa H (2012) One-step casting of Laemmli discontinued sodium dodecyl sulfate–polyacrylamide gel electrophoresis gel. Anal Biochem 421(1):347–349

    CAS  PubMed  Google Scholar 

  24. Van der Walt SJ, Joubert FJ (1971) Studies on puff adder (Bitis arietans) venom—I. Purification and properties of protease A. Toxicon 9:153–161

    PubMed  Google Scholar 

  25. Sales PBV, Santoro ML (2008) Nucleotidase and DNase activities in Brazilian snake venoms. Comp Biochem Physiol Part 147:85–95

    Google Scholar 

  26. Chérifi F, Laraba-Djebari F (2013) Isolated biomolecules of pharmacological interest in hemostasis from Cerastes cerastes venom. J Venom Anim 19:11

    Google Scholar 

  27. Fatah C, Samah S, Fatima L (2018) Antiplatelet and anticoagulant activities of two phospholipase A2s purified from Cerastes cerastes venom: Structure-function relationship. J Biochem Mol Toxicol 32(12):e22219

    PubMed  Google Scholar 

  28. Tsoupras A, Zabetakis I, Lordan R (2019) Platelet aggregometry assay for evaluating the effects of platelet agonists and antiplatelet compounds on platelet function in vitro. MethodsX 6:63–70

    PubMed  Google Scholar 

  29. Fratantoni J, Poindexter BJ (1990) Measuring platelet aggregation with microplate reader: a new technical approach to platelet aggregation studies. Am J Clin 94:613–617

    CAS  Google Scholar 

  30. Chang H, Yanachkov I, Michelson A, Li YF (2010) Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors. Thromb Journal 125:159–165

    CAS  Google Scholar 

  31. Harder S, Klinkhardt U, Graff J, Westrup D, Kirchmaier CM, Glusa E, Mascelli MA, Marciniak SJ, Just A, Lösche W, Breddin HK (2001) In vitro dose response to different GPIIb/IIIa-antagonists: Inter-laboratory comparison of various platelet function tests. Thromb Res 102(1):39–48

    CAS  PubMed  Google Scholar 

  32. Kleiman NS (1999) Pharmacokinetics and pharmacodynamics of glycoprotein IIb-IIIa inhibitors. Am Heart J 138:4

    Google Scholar 

  33. Gadhwal M, Patil S, Sci PD (2013) Homology modeling of aryl hydrocarbon receptor and docking of agonists and antagonists. Int J Pharm Pharm 5(2):76–81

    CAS  Google Scholar 

  34. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12(2):85–94

    CAS  PubMed  Google Scholar 

  35. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 20 model: a next generation energy model for high resolution protein structure modeling. Proteins Struct Funct Bioinforma 79(10):2794–2812

    CAS  Google Scholar 

  36. Fatah C, Saoud S, Laraba-Djebari F (2018) Pharmacological properties of a thrombin-like, inducer of platelet aggregation, purif signa ied from Cerastes cerastes venom: elucidation of activated pathway ling. Toxicol Lett 295:S105–S105

    Google Scholar 

  37. Saoud S, Chérifi F, Benhassine T, Laraba-Djebari F (2017) Purification and characterization of a platelet aggregation inhibitor and anticoagulant Cc 5_NTase, CD 73-like, from Cerastes cerastes venom. J Biochem Mol Toxicol 31(5):e21885

    Google Scholar 

  38. Chérifi F, Rousselle JC, Namane A, Laraba-Djebari F (2010) CCSV-MPase, a novel procoagulant metalloproteinase from Cerastes cerastes venom: purification, biochemical characterization and protein identification. Protein J 29(7):466–474

    PubMed  Google Scholar 

  39. Kallech-Ziri O, Luis J, El Ayeb M, Marrakchi N (2007) Snake venom disintegrins: classification and therapeutic potential. Arch Inst Pasteur Tunis 84(1–4):29–37

    CAS  PubMed  Google Scholar 

  40. Luis J, Ayeb ME, Marrakchi ETN (1990) Les desintegrines issues des venins de serpents : classification et potentiel therapeutique. Arch Inst Pasteur Tunis 84:29–37

    Google Scholar 

  41. Liu JW, Du XY, Liu P, Chen X, Xu JM, Wu XF, Zhou YC (2000) Purification, characterization, and cDNA sequence of halysetin, a disintegrin-like/cysteine-rich protein from the venom of Agkistrodon halys Pallas. Biochem Biophys Res Commun 278(1):112–118

    CAS  PubMed  Google Scholar 

  42. Yeh CH, Peng HC, Yih JB, Huang TF (1998) A new short chain RGD-containing disintegrin, accutin, inhibits the common pathway of human platelet aggregation. Biochim Biophys Acta 1425(3):493–504

    CAS  PubMed  Google Scholar 

  43. Oyama E, Takahashi H, Ishii K (2017) Effect of amino acids near the RGD sequence on binding activities between αIIbβ3 integrin and fibrinogen in the presence of RGD-containing synthetic peptides from elegantin and angustatin. Peptides 96(March):31–37

    CAS  PubMed  Google Scholar 

  44. Kini RM, Evans HJ (1992) Structural domains in venom proteins: Evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. Toxicon 30(3):265–293

    CAS  PubMed  Google Scholar 

  45. Olfa KZ, José L, Salma D, Amine B, Najet SA, Nicolas A, Maxime L, Raoudha Z, Kamel M, Jacques M, Jean-Marc S, Mohamed EA, Naziha M (2005) Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Investig 85(12):1507–1516

    CAS  PubMed  Google Scholar 

  46. Gould RJ, Polokoff MA, Friedman PA, Huang T, Holt JC, Cook JJ, Niewiarowski S (1990) Disintegrins : a family of lntegrin inhibitory. Exp Biol Med 195:3–6

    Google Scholar 

  47. Oyama E, Furudate N, Senuki K, Takahashi H (2009) Purification and characterization of a new platelet aggregation inhibitor with dissociative effect on ADP-induced platelet aggregation, from the venom of Protobothrops elegans (Sakishima-habu). Toxicon 53(7–8):706–712

    CAS  PubMed  Google Scholar 

  48. Calvete JJ, Jurgens M, Marcinkiewicz C, Romero A, Schrader M, Niewiarowski S (2000) Disulphide-bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin alpha5beta1 antagonist from Eristocophis macmahoni venom. Biochem J 345(Pt 3):573–581

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bilgrami S, Tomar S, Yadav S, Kaur P, Kumar J, Jabeen T, Sharma S, Singh TP (2004) Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 25 Å resolution. J Mol Biol 341(3):829–837

    CAS  PubMed  Google Scholar 

  50. Calvete JJ, Wang Y, Mann K, Schäfer W, Niewiarowski S, Stewart GJ (1992) The disulfide bridge pattern of snake venom disintegrins, flavoridin and echistatin. FEBS Lett 309(3):316–320

    CAS  PubMed  Google Scholar 

  51. Hantgan RR, Stahle MC, Connor JH, Lyles DS, Horita DA, Rocco M, Nagaswami C, Weisel JW, McLane MA (2004) The disintegrin echistatin stabilizes integrin αIIbβ3’s open conformation and promotes its oligomerization. J Mol Biol 342(5):1625–1636

    CAS  PubMed  Google Scholar 

  52. McLane MA, Vijay-Kumar S, Marcinkiewicz C, Calvete JJ, Niewiarowski S (1996) Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of αIIbβ3 and αvβ3 integrins. FEBS Lett 391(1–2):139–143

    CAS  PubMed  Google Scholar 

  53. Moreno-Murciano MP, Monleón D (2003) NMR solution structure of the non-RGD disintegrin obtustatin. J Mol Biol 329:135–145

    Google Scholar 

  54. Beviglia L, Poggi A, Rossi C, McLane MA, Calabrese R, Scanziani E, Cook JJ, Niewiarowski S (1993) Mouse antithrombotic assay: inhibition of platelet thromboembolism by disintegrins. Thromb Res 71(4):301–315

    CAS  PubMed  Google Scholar 

  55. Shebuski RJ, Ramjit DR, Bencen GH, Polokoff MA (1989) Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper bitis arietans. J Biol Chem 264(36):21550–21556

    CAS  PubMed  Google Scholar 

  56. Hall EH, Slack RJ (2018) (2019) The effect of divalent metal cations on the αv integrin binding site is ligand and integrin specific. Biomed Pharmacother 110:362–370

    PubMed  Google Scholar 

  57. Xiong JP, Stehle T, Goodman SL, Arnaout MA (2003) Integrins, cations and ligands: making the connection. J Thromb Haemost 1(7):1642–1654

    CAS  PubMed  Google Scholar 

  58. Kühnel G, Pralle H, Matzdorff AC, Kemkes-Matthes B, Voss R, Fareed J (2003) Effect of glycoprotein IIb/IIIa inhibitors on CD62p expression, platelet aggregates, and microparticles in vitro. J Lab Clin Med 135(3):247–255

    Google Scholar 

  59. Scazziota A, Altman R, Rouvier J, Gonzalez C, Ahmed Z, Jeske WP, Walenga JM, Fareed J (2000) Abciximab treatment in vitro after aspirin treatment in vivo has additive effects on platelet aggregation, ATP release, and P-selectin expression. Thromb Res 100(6):479–488

    CAS  PubMed  Google Scholar 

  60. Swaim MW, Chiang HS, Huang TF (1996) Characterisation of platelet aggregation induced by PC-3 human prostate adenocarcinoma cells and inhibited by venom peptides Trigramin and Rhodostomin. Eur J Cancer 32(4):715–721

    Google Scholar 

  61. Liu CZ, Peng HC, Huang TF (1995) Crotavirin, a potent platelet aggregation inhibitor purified from the venom of the snake Crotalus viridis. Toxicon 33(10):1289–1298

    CAS  PubMed  Google Scholar 

  62. Knight LC, Romano JE (2005) Functional expression of bitistatin, a disintegrin with potential use in molecular imaging of thromboembolic disease. Protein Expr Purif 39(2):307–319

    CAS  PubMed  Google Scholar 

  63. Trikha M, Rote WE, Manley PJ, Lucchesi BR, Markland FS (1994) Purification and characterization of platelet aggregation inhibitors from snake venoms. Thromb Res 73(1):39–52

    CAS  PubMed  Google Scholar 

  64. Lazarus RA, McDowell RS (1993) Structural and functional aspects of RGD-containing protein antagonists of glycoprotein IIb-IIIa. Curr Opin Biotechnol 4(4):438–445

    CAS  PubMed  Google Scholar 

  65. Mion G, Olive F, Hernandez E, Martin YN, Vieillefosse AS, Goyffon M (2002) Action des venins sur la coagulation sanguine : diagnostic des syndromes hémorragiques. Bull Soc Pathol Exot 95(3):132–132

    CAS  PubMed  Google Scholar 

  66. Juárez P, Comas I, González-Candelas F, Calvete JJ (2008) Evolution of snake venom disintegrins by positive Darwinian selection. Mol Biol Evol 25(11):2391–2407

    PubMed  Google Scholar 

  67. Rucinski B, Niewiarowski S, Holt JC, Soszka T, Knudsen KA (1990) Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. BBA 1054(3):257–262

    CAS  PubMed  Google Scholar 

  68. Sohn Y, Hong S, Cho K, Choi W (2008) Acute and repeated dose toxicity studies of recombinant saxatilin, a disintegrin from the Korean snake (Gloydius saxatilis). Toxicon 51:406–417

    CAS  PubMed  Google Scholar 

  69. Wermelinger LS, Geraldo RB, Frattani FS, Rodrigues CR, Juliano MA, Castro HC, Zingali RB (2009) Integrin inhibitors from snake venom: Exploring the relationship between the structure and activity of RGD-peptides. Arch Biochem Biophys 482(1–2):25–32

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge Dr Hocine Rachid from INSERM UMRS 976 and University of Paris-Diderot, Saint Louis Hospital, Paris 75010, France for his help in purity control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Laraba-Djebari.

Ethics declarations

Conflicts of interest

The authors have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameziani, M., Chérifi, F., Kiheli, H. et al. Isolation and Functional Identification of an Antiplatelet RGD-Containing Disintegrin from Cerastes cerastes Venom. Protein J 39, 574–590 (2020). https://doi.org/10.1007/s10930-020-09915-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09915-y

Keywords

Navigation