Skip to main content
Log in

The influence of carbon source on the wall structure of ordered mesoporous carbons

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A series of ordered mesoporous carbons (OMCs) have been synthesized by filling the pores of siliceous SBA-15 hard template with various carbon precursors including sucrose, furfuryl alcohol, naphthalene and anthracene, followed by carbonization and silica dissolution. The carbon replicas have been characterized by powder XRD, TEM and N2 adsorption techniques. Their electrochemical performance used as electric double-layer capacitors (EDLCs) were also conducted with cyclic voltammetry and charge-discharge cycling tests. The results show that highly ordered 2D hexagonal mesostructures were replicated by using all these four carbon sources under the optimal operation conditions. Physical properties such as mesoscopic ordering, surface areas, pore volumes, graphitic degrees, and functional groups are related to the precursors, but pore sizes are shown minor relationship with them. The sources, which display high yields to carbons, for example, furfuryl alcohol and anthracene are favorable to construct highly ordered mesostructures even at high temperatures (1300 °C). OMCs prepared from non-graphitizable sources such as sucrose and furfuryl alcohol display amorphous pore walls, and large surface areas and pore volumes. The functional groups in the precursors like sucrose and furfuryl alcohol can be preserved on carbon surfaces after the carbonization at low temperatures but would be removed at high temperatures. The graphitizable precursors with nearly parallel blocks and weak cross-linkage between them like anthracene are suitable for deriving the OMCs with graphitic walls. Therefore, the OMCs originated from sucrose and furfuryl alcohol behave the highest capacitances at a carbonization of 700 °C among the four carbons due to the high surface areas and plenty of functional groups, and a declination at high temperatures possibly attribute to the depletion of functional groups. Anthracene derived OMCs has the lowest capacitance carbonized at 700 °C, and a steady enhancement when heated at high temperatures, which is attributed to the graphitization. The OMCs derived from naphthalene have the stable properties such as relatively high surface areas, few electroactive groups and limited graphitizable properties, and in turn medium but almost constant capacitances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B. 103, 7743 (1999)

    Article  CAS  Google Scholar 

  2. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 13, 677 (2001)

    Article  CAS  Google Scholar 

  3. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122, 10712 (2000)

    Article  CAS  Google Scholar 

  4. M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S.H. Joo, R. Ryoo, J. Phys. Chem. B. 106, 1256 (2002)

    Article  CAS  Google Scholar 

  5. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 412, 169 (2001)

    Article  CAS  Google Scholar 

  6. J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. 2177, (1999)

  7. J.S. Lee, S.H. Joo, R. Ryoo, J. Am. Chem. Soc. 124, 1156 (2002)

    Article  CAS  Google Scholar 

  8. H.F. Yang, Q.H. Shi, X.Y. Liu, S.H. Xie, D.C. Jiang, F.Q. Zhang, C.Z. Yu, B. Tu, D.Y. Zhao, Chem. Comm. 2842, (2002)

  9. J. Lee, K. Sohn, T. Hyeon, J. Am. Chem. Soc. 123, 5146 (2001)

    Article  CAS  Google Scholar 

  10. H.F. Yang, Y. Yan, Y. Liu, F.Q. Zhang, R.Y. Zhang, Y. Meng, M. Li, S.H. Xie, B. Tu, D.Y. Zhao, J. Phys. Chem. B. 108, 17320 (2004)

    Article  CAS  Google Scholar 

  11. A.B. Fuertes, S. Alvarez, Carbon. 42, 3049 (2004)

    Article  CAS  Google Scholar 

  12. T.W. Kim, I.S. Park, R. Ryoo, Angew. Chem. Int. Ed. 42, 4375 (2003)

    Article  CAS  Google Scholar 

  13. Y.D. Xia, Z.X. Yang, R. Mokaya, J. Phys. Chem. B. 108, 19293 (2004)

    Article  CAS  Google Scholar 

  14. K. Bohme, W.D. Einicke, O. Klepel, Carbon. 43, 1918 (2005)

    Article  Google Scholar 

  15. M. Kruk, M. Jaroniec, T.W. Kim, R. Ryoo, Chem. Mater. 15, 2815 (2003)

    Article  CAS  Google Scholar 

  16. A.H. Lu, W. Schmidt, B. Spliethoff, F. Schuth, Adv. Mater. 15, 1602 (2003)

    Article  CAS  Google Scholar 

  17. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science. 279, 548 (1998)

    Article  CAS  Google Scholar 

  18. A.H. Lu, W.C. Li, W. Schmidt, W. Kiefer, F. Schuth, Carbon. 42, 2939 (2004)

    Article  CAS  Google Scholar 

  19. C.H. Kim, D.K. Lee, T.J. Pinnavaia, Langmuir 20, 5157 (2004)

    Article  CAS  Google Scholar 

  20. Y.S. Lim, H.S. Kim, M.S. Kim, N.H. Cho, S. Nahm, Macromole. Res. 11, 122 (2003)

    CAS  Google Scholar 

  21. D.J. Kim, H.I. Lee, J.E. Yie, S.J. Kim, J.M. Kim, Carbon. 43, 1868 (2005)

    Article  CAS  Google Scholar 

  22. E.B. Sanders, A.I. Goldsmith, J.I. Seeman, J. Anal. & Appl. Pyroly. 66, 29 (2003)

    Article  CAS  Google Scholar 

  23. S.M. Manocha, D.Y. Vashistha, L.M. Manocha, J. Mater. Sci. Lett. 16, 705 (1997)

    Article  CAS  Google Scholar 

  24. A. Shindo, K. Izumino, Carbon 32, 1233 (1994)

    Article  CAS  Google Scholar 

  25. K.P. Gierszal, T.W. Kim, R. Ryoo, M. Jaroniec, J. Phys. Chem. B. 109, 23263 (2005)

    Article  CAS  Google Scholar 

  26. T.W. Kim, Ryoo, R.K. P. Gierszal, M. Jaroniec, L.A. Solovyov, Y. Sakamoto, O. Terasaki, J. Mater. Chem. 15, 1560 (2005)

    Article  CAS  Google Scholar 

  27. Y. Sakamoto, T.W. Kim, R. Ryoo, O. Terasaki, Angew. Chem. Int. Ed. 43, 5231 (2004)

    Article  CAS  Google Scholar 

  28. F. Schuth, Angew. Chem. Int. Ed. 42, 3604 (2003)

    Article  Google Scholar 

  29. V.A. Davydov, A.V. Rakhmanina, V. Agafonov, B. Narymbetov, J.P. Boudou, H. Szwarc, Carbon. 42, 261 (2004)

    Article  CAS  Google Scholar 

  30. I. Mochida, Y. Korai, C.H. Ku, F. Watanabe, Y. Sakai, Carbon. 38, 305 (2000)

    Article  CAS  Google Scholar 

  31. A. Burian, P. Daniel, S. Duber, J. Dore, Philosophical Magazine B. 81, 525 (2001)

    Article  CAS  Google Scholar 

  32. P.J.F. Harris, Int. Mater. Rev. 42, 206 (1997)

    CAS  Google Scholar 

  33. S. Ergun, V.H. Tiensuu, Acta Crystallogr. 12, 1050 (1959)

    Article  CAS  Google Scholar 

  34. S. Ergun, L.E. Alexander, Nature 195, 765 (1962)

    Article  CAS  Google Scholar 

  35. A. Oberlin, Carbon 22, 521 (1984)

    Article  CAS  Google Scholar 

  36. J.N. Rouzaud, A. Oberlin, Carbon 27, 517 (1989)

    Article  CAS  Google Scholar 

  37. E. Frackowiak, F. Beguin, Carbon 39, 937 (2001)

    Article  CAS  Google Scholar 

  38. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  39. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nature Mater. 4, 366 (2005)

    Article  CAS  Google Scholar 

  40. H.Y. Liu, K.P. Wang, H.S. Teng, Carbon 43, 559 (2005)

    Article  CAS  Google Scholar 

  41. A.B. Fuertes, F. Pico, J.M. Rojo, J. Power Sources 133, 329 (2004)

    Article  CAS  Google Scholar 

  42. S. Yoon, J.W. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147, 2507 (2000)

    Article  CAS  Google Scholar 

  43. K.L. Yang, S. Yiacoumi, C. Tsouris, J. Electroanal. Chem. 540, 159 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NSF of China (20407014, 20421303, 20373013 and 20521140450); State Key Basic Research Program of PRC (2006CB202502); Shanghai Sci. & Tech. Committee (06DJ14006, 055207078, 05DZ22313, and 03QF14037); Shanghai Nanotech Promotion Center (0652nm024), Shanghai Education Committee (02SG01, 04DB05 and T0402); Program for New Century Excellent Talents in University (NCET-04-03). We thank Dr. S. H. Xie for TEM assistance. Y. W. thanks the China Post-Doc Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Y., Wan, Y., Cheng, Y. et al. The influence of carbon source on the wall structure of ordered mesoporous carbons. J Porous Mater 15, 601–611 (2008). https://doi.org/10.1007/s10934-007-9139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-007-9139-x

Keywords

Navigation