Skip to main content

Advertisement

Log in

Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, the preparation of gas separating carbon hollow fiber membranes based on a 3,3′4,4′- benzophenone tetracarboxylic dianhydride and 80% methylphenylene-diamine + 20% methylene diamine co-polyimide precursor (BTDA-TDI/MDI, Ρ84 Lenzing GmbH), their permselectivity properties as well as details of the carbon nanostructure are reported. Hollow fibers were initially prepared by the dry/wet phase inversion process in a spinning set-up, while the spinning dope consisted of P84 as polymer and NMP as solvent. The developed polymer hollow fibers were further carbonized in nitrogen at temperatures up to 1173 K. Thermogravimetric analysis was used to investigate the weight loss during the carbonization process. The nitrogen, methane and carbon dioxide adsorption capacity of the prepared materials was determined gravimetrically at 273 and 298 K and hydrogen adsorption experiments were performed at 77 K up to 1 bar. Scanning electron microscopy was used to elucidate the morphological characteristics and the nanostructure while H2 sorption at 77 K was applied to evaluate the microporosity of the developed carbon hollow fiber membranes. In all cases, the permeability (Barrer) of He, H2, CH4, CO2, O2 and N2 were measured at atmospheric pressure and temperatures 313, 333 and 373 K and were found higher than those of the precursor. Moreover, the calculated permselectivity values were significantly improved. The developed carbon fibers exhibit rather low H2 permeance values (8.2 GPU or 2.74 × 10−9 mol/m2·s·Pa) with a highest H2/CH4 selectivity coefficient of 843 at 373 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Soffer, J.E. Koresh, S. Saggy, Separation Device. U.S. Patent 4,685,940 (1987)

  2. N.K. Kanellopoulos, Recent Advances in Gas Separation by Microporous Ceramic Membranes, (Elsevier Sci. B.V., 2000), p. 323

  3. J.E. Koresh, A Soffer, Sep. Sci. Technol. 22, 973 (1987)

    Article  CAS  Google Scholar 

  4. A.B. Fuertes, D.M. Nevskaia, T.A. Centeno, Micropor. Mesopor. Mater. 33(1–3), 115 (1999)

    Article  CAS  Google Scholar 

  5. C.W. Jones, W.J. Koros, Carbon 32(8), 1419 (1994)

    Article  CAS  Google Scholar 

  6. V.C. Geiszler, W.J. Koros, Ind. Eng. Chem. Res. 35(9), 2999 (1996)

    Article  CAS  Google Scholar 

  7. Y.D. Chen, R.T. Yang, Ind. Eng. Chem. Res. 33(7), 3146 (1994)

    Article  CAS  Google Scholar 

  8. M.B. Rao, S. Sircar, T.C. Golden, Gas separation by adsorbent membranes. U.S. Patent 5,104,425 (1992)

  9. T.A. Centeno, A.B. Fuertes, Carbon 38(7), 1067 (2000)

    Article  CAS  Google Scholar 

  10. J.E. Koresh, A. Soffer, Sep. Sci. Tech. 18, 723 (1983)

    Article  CAS  Google Scholar 

  11. A. Soffer, M. Azariah, A. Amar, H. Cohen, D. Golub, S. Saguee, et al. Method of Improving the Selectivity of Carbon Membranes by Chemical Carbon Vapor Deposition. U.S. Patent 5,695,818 (1997)

  12. T.A. Centeno, A.B. Fuertes, J. Membr. Sci. 160(2), 201 (1999)

    Article  CAS  Google Scholar 

  13. J.C. Chen, I.R. Harrison, Carbon 40(1), 25 (2002)

    Article  CAS  Google Scholar 

  14. L.I.B. David, A.F. Ismail, J. Membr. Sci. 213(1–2), 285 (2003)

    Article  CAS  Google Scholar 

  15. E. Barbosa-Coutinho, M.M. Salim Vera, C.P. Borges, Carbon 41(9), 1707 (2003)

    Article  CAS  Google Scholar 

  16. M.G. Sedigh, L. Xu, T.T. Tsotsis, M. Sahimi, Ind. Eng. Chem. Res. 38(9), 3367 (1999)

    Article  CAS  Google Scholar 

  17. H. Hatori, H. Takagi, Y. Yamada, Carbon 42(5–6), 1169 (2004)

    Article  CAS  Google Scholar 

  18. A. Bürger, E. Fitzer, M. Heym, B. Terwiesch, Carbon 13(3), 149 (1975)

    Article  Google Scholar 

  19. T. Takeichi, Y. Eguchi, Y. Kaburagi, Y. Hishiyama, M. Inagaki, Carbon 36(1–2), 117 (1998)

    Article  CAS  Google Scholar 

  20. H.B. Park, Y.K. Kim, J.M. Lee, S.Y. Lee, Y.M. Lee, J. Membr. Sci. 229(1–2), 117 (2004)

    Article  CAS  Google Scholar 

  21. V.C. Geiszler. Polyimide Precursors for Carbon Membranes. University of Texas, PhD thesis, (1997)

  22. P.S. Tin, T.S. Chung, Y. Liu, R. Wang, Carbon 42(15), 3123 (2004)

    Article  CAS  Google Scholar 

  23. T.A. Steriotis, F.K. Katsaros, A.K. Stubos, A.C. Mitropoulos, P. Galiatsatou, N. Zouridakis, et al., Rev. Sci. Instrum. 67(7), 2545 (1996)

    Article  CAS  Google Scholar 

  24. H. Zhonghua, N. Maes, E.F. Vansant, J. Porous Mater. 2, 19 (1995)

    Article  Google Scholar 

  25. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Chem. Eng. Technol. 26(8), 852 (2003)

    Article  Google Scholar 

  26. S.W. Rutherford, C. Nguyen, J.E. Coons, D.D. Do, Langmuir 19(20), 8335 (2003)

    Article  CAS  Google Scholar 

  27. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982), p. 228

    Google Scholar 

  28. F. Rodriguez-Reinoso, A. Linares-Solano, in: Chemistry and Physics of Carbon, Vol 21, ed. by P.A. Thrower (Dekker, New York, 1988) , p. 1–146

  29. J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem. B 110(10), 4531 (2006)

    Article  CAS  Google Scholar 

  30. A.L. McClellan, H.F. Harnsberger, J. Colloid Interface Sci. 23(4), 577 (1967)

    Article  CAS  Google Scholar 

  31. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Amer. Chem. Soc. 62(7), 1723 (1940)

    Article  CAS  Google Scholar 

  32. J.N. Barsema, G.C. Kapantaidakis, N.F.A. van der Vegt, G.H. Koops, M. Wessling, J. Membr. Sci. 216, 195 (2003)

    Article  CAS  Google Scholar 

  33. J.N. Barsema, N.F.A. van der Vegt, G.H. Koops, M. Wessling, J. Membr. Sci. 205, 239 (2002)

    Article  CAS  Google Scholar 

  34. R.S.A. De Lange, K. Keizer, A.J. Burggraaf, J. Membr. Sci. 104(1–2), 81 (1995)

    Google Scholar 

  35. R.S.A. De Lange, J.H.A. Hekkink, K. Keizer, A.J. Burggraaf, J. Membr. Sci. 99(1), 57 (1995)

    Article  Google Scholar 

  36. Y. Takata, T. Tsuru, T. Yoshioka, M. Asaeda, Microporous Mesoporous Mater. 54(3), 257 (2002)

    Article  CAS  Google Scholar 

  37. E.E. McLeary, J.C. Jansen, F. Kapteijn, Microporous Mesoporous Mater. 90, 198 (2006)

    Article  CAS  Google Scholar 

  38. P. Ciavarella, H. Moueddeb, S. Miachon, K. Fiaty, J.A. Dalmon, Catal. Today 56(1–3), 253 (2000)

    Article  CAS  Google Scholar 

  39. D.W. Breck, Zeolite Molecular Sieves; Structure, Chemistry and Use (Wiley, New York, 1973), p. 636

    Google Scholar 

  40. R.M. Barrer, J. Chem. Soc. Faraday Trans. 86(7), 1123 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Theodore Steriotis for the very important contribution of this paper. The authors would like also to thank the “HYDROCELL–E22” research project of the Greek General Secretariat for Research and Technology and the 04–3–001/6 “Archimedes” Research Project of the Greek Ministry of National Education and Religious Affairs for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Favvas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Favvas, E.P., Kouvelos, E.P., Romanos, G.E. et al. Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J Porous Mater 15, 625–633 (2008). https://doi.org/10.1007/s10934-007-9142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-007-9142-2

Keywords

Navigation