Skip to main content
Log in

Characterization of porous bi-modal Ni structures

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A new nickel-based porous structure, exhibiting a bi-modal pore size distribution, has been developed through the combination of nickel foam (INCOFOAM) with sintered nickel filamentary powder (T255). Sintering was carried out in the 900–980 °C temperature range in a vacuum environment. These bi-modal nickel samples were examined for their microstructure, hydraulic behaviour including capillary head and permeability, specific surface area (SAA), and overall porosity. The incorporation of a layer of sintered nickel filamentary powder (T255) onto the nickel foam was shown to increase both the specific surface area and capillary pumping pressure of the foam, while simultaneously maintaining high porosity and liquid permeability. Both the sintering temperature and the degree of nickel powder coverage were determined to be critical factors contributing to the properties of these bi-modal nickel porous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.D. Dunn, D.A. Reay, Heat Pipes, 4th edn. (Pergamon, 1994)

  2. D.L. Britton, in Nickel Hydroxide Electrodes, vol. 90(4), ed. by D.A. Corrigan, A.H. Zimmerman (The Electrochemical Society Inc., Pennington, NJ, 1990), p. 234

  3. V.I. Chani, Q. Yang, D. Wilkinson, G.C. Weatherly, J. Power Sources 142, 370–381 (2005)

    Article  CAS  Google Scholar 

  4. A. Gil, A. Diaz, L.M. Gandia, M. Montes, Appl. Catal. A: Gen. 109, 167–179 (1994)

    Article  CAS  Google Scholar 

  5. R.M. de Almeida, H.V. Fajardo, D.Z. Mezalira, G.B. Nuernberg, L.K. Noda, L.F.D. Probst, N.L.V. Carreno, J. Mol. Catal. A: Chem. 259, 328–335 (2006)

    Article  CAS  Google Scholar 

  6. P. Brennecke, H.H. Ewe, Energy Convers. Manage. 31(6), 585–594 (1991)

    Article  CAS  Google Scholar 

  7. D. Queheillalt, D.D. Hass, D. Sypeck, H.N.G. Wadley, J. Mat. Res. 16(4), 1028–1036 (2001)

    Article  CAS  Google Scholar 

  8. O.L. Get’man, L.I. Chernyshev, Powder Metall. Metal Ceram. 42(11–12), 630–637 (2003)

    Article  CAS  Google Scholar 

  9. A.Y. Zaitsev, D.S. Wilkinson, G.C. Weatherly, T.F. Stephenson, J. Power Sources 123, 253–260 (2003)

    Article  CAS  Google Scholar 

  10. W.H. Zhu, P. Durben, B. Tatarchuk, J. Power Source 111, 221–231 (2002)

    Article  CAS  Google Scholar 

  11. K.C. Leong, C.Y. Liu, J. Porous Mater. 4, 303–308 (1997)

    Article  CAS  Google Scholar 

  12. E.G. Reimbrecht, P. Wendhausen, M.C. Fredel, E. Basso, Key Eng. Mater. 189–191, 455–460 (2001)

    Article  Google Scholar 

  13. M. Tane, S.K. Hyun, H. Nakajima, J. Appl. Phys. 97(103701), 1–4 (2005)

    Google Scholar 

  14. S.K. Hyun, M. Murakami, H. Nakajima, Mater. Sci. Eng. A299, 241 (2001)

    CAS  Google Scholar 

  15. S.W. Chi, Heat Pipe Theory and Practice: A Sourcebook (McGraw-Hill Book Company, NY, 1997)

    Google Scholar 

  16. A. Gupta, G. Upadhya, Adv. Electron. Packag. 2, 2129–2137 (1999)

    Google Scholar 

  17. B.D. Marcus, Theory and Design of Variable Conductance Heat Pipe, Report No. CR-2018 (NASA, Washington, DC, 1972)

  18. Q.M. Yang, V.A. Ettel, J. Babjak, D.K. Charles, M.A. Mosoiu, J. Electrochem. Soc. 150(4), A543–A550 (2003)

    Article  CAS  Google Scholar 

  19. Inco Special Products, http://www.incosp.com (2007)

  20. C. Chan, H. Salt, Capillary Head and Permeability of Wicks with Single or Multiple Sized Pores (Commonwealth Scientific and Industrial Research Organisation, Australia, 1989)

    Google Scholar 

  21. G. Canti, G.P. Celata, M. Cumo, M. Furrer, Rev. Gen. Therm. 37, 5–16 (1998)

    CAS  Google Scholar 

  22. Douglas Charles, INCOLIB-#150901, 2006

  23. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to express their appreciation to Dr. Quan Yang, at Research and Development, Vale Inco located in Mississauga, Canada, for providing technical advice and materials for the experiment. Special thanks go to Mr. Douglas Charles, at CVRD Inco, for conducing specific surface area tests using the BET method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Franchi, G. & Cai, F. Characterization of porous bi-modal Ni structures. J Porous Mater 16, 165–173 (2009). https://doi.org/10.1007/s10934-007-9181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-007-9181-8

Keywords

Navigation